某大学ipv6和ipv4结合的校园网规划设计

目录
第 1 章 绪 论 4
1.1 课题背景 4
1.2 高校信息化建设的意义 4
1.3 课题任务 5
第 2 章 IPv6校园网系统架构分析与设计 5
2.1 IPv6 校园网的过渡方案分析 5
2.2 IP地址规划 5
2.3 路由规划 6
2.3 网络架构总体设计 6
第 4 章 IPv6 校园网系统架构网络配置 6
4.1 DHCPv4地址配置 6
4.2 DHCPv6地址配置 7
4.3 IPv6 Tunnel 隧道配置 8
4.3.1 Campus_A 8
4.3.2 Campus_B 8
4.3.3 Campus_C 9
4.4 OSPFv6路由配置 9
4.4.1 Campus_A 9
4.4.2 Campus_B 10
4.4.3 Campus_C 10
第 5 章 IPv6 校园网系统测试 11
5.1 测试各个校区之间通过建立的隧道联通性 11
5.1.1 Campus_A 与Campus_B 、Campus_C 11
5.1.1 Campus_B 与Campus_A 、Campus_C 12
5.1.1 Campus_C 与Campus_A 、Campus_B 12
5.2 测试内部主机的IPv6联通性 13
5.2.1 Campus_A 13
5.2.2 Campus_B 13
5.2.3 Campus_C 14
1.4 课题任务
本课题针对大学三个校区从 IPv4 网络向 IPv6 网络过渡过程中的技术问题中,重点研究了 IPv6 技术原理、过渡技术、路由技术、相关协议和安全机制等,结合本校现网应用和网络过渡的实际需求,完成 GC 校园 IPv6 网络架构的设计。通过完成基于 GNS3+VPCS 的 IPv6 实验平台的搭建,隧道技术技术进行基础网络模拟实验,并且完成基IPv6DHCP服务的原理和功能分析,以及详细配置,为其他应用的迁移作必要的技术准备。
据和技术支持。

第 2 章 IPv6校园网系统架构分析与设计
2.1 IPv6 校园网的过渡方案分析
根据现有校园网内的实际情况,应用各种过渡技术,在不影响现有 IPv4 校园网主体拓扑结构的条件下,使得校园网中需要先期部署 IPv6 网络的地方能够通过隧道技术,适时方便地接入 Internet。待到 IPv6 网络规模发展到主导地位时也可使用 NAT-PT 技术进行 IPv4 和 IPv6 网络间的互通转换。
2.2 IP地址规划
Campus_A
接口 地址
G4/0 10.10.10.254/24
Tunnel 100 2018::1/64
Tunnel 200 2020::1/64
G4/0 1000::1/64

Campus_B
接口 地址
G4/0 10.10.20.254/24
Tunnel 100 2018::2/64
Tunnel 300 2022::2/64
G4/0 2000::1/64

Campus_C
接口 地址
G4/0 10.10.30.254/24
Tunnel 200 2020::2/64
Tunnel 300 2022::2/64
G4/0 3000::1/64

2.3 路由规划
在本次网络建设中建议各系统内部采用 OSPFv3 作为内部的 IGP 协议。这是由于 OSPF 与其他 IGP 路由协议相比,更加适用于网络规模较大,网络结构复杂的大型网络。OSPF 具有完善的链路状态机制,有效防止路由环路;OSPF 具有的邻居间验证功能,有效保证网络层安全;OSPF 具有灵活的路由聚合功能,本文转载自http://www.biyezuopin.vip/onews.asp?id=14692有效减少整网路由信息规模,加快收敛速度和减少网络振荡;OSPFv3 协议具有较完备的路由信息选优机制,可通过多种方式控制流量部署。

4.1 DHCPv4地址配置
Campus_A
ip dhcp pool Campus_A
   network 10.10.10.0 255.255.255.0
   default-router 10.10.10.254
   dns-server 114.114.114.114

Campus_B
ip dhcp pool Campus_B
   network 10.10.20.0 255.255.255.0
   default-router 10.10.20.254

Campus_C
ip dhcp pool Campus_C
   network 10.10.30.0 255.255.255.0
   default-router 10.10.30.254
4.2 DHCPv6地址配置
Campus_A
ipv6 dhcp pool Campus_Av6
 address prefix 1000::1/64 lifetime infinite infinite

interface GigabitEthernet4/0
ipv6 address 1000::1/64
ipv6 nd managed-config-flag
 ipv6 dhcp server Campus_Av6
Campus_B
ipv6 dhcp pool Campus_Bv6
 address prefix 2000::1/64 lifetime infinite infinite
interface GigabitEthernet4/0
ipv6 address 2000::1/64
ipv6 nd managed-config-flag
 ipv6 dhcp server Campus_Bv6

Campus_C
ipv6 dhcp pool Campus_Cv6
 address prefix 3000::1/64 lifetime infinite infinite
interface GigabitEthernet4/0
ipv6 address 3000::1/64
ipv6 nd managed-config-flag
 ipv6 dhcp server Campus_Cv6

4.3 IPv6 Tunnel 隧道配置
4.3.1 Campus_A

//环回接口
interface Loopback0
 no ip address
 ipv6 address 2019::1/64
//Tunnel100
interface Tunnel100
 no ip address
 ipv6 address 2018::1/64
 tunnel source Serial5/1
 tunnel destination 210.20.10.1
 tunnel mode ipv6ip

//Tunnel 200
interface Tunnel200
 no ip address
 ipv6 address 2020::1/64
 tunnel source Serial5/1
 tunnel destination 199.20.10.1
 tunnel mode ipv6ip

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shejizuopin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值