基于遗传算法的图像恢复复原研究与实现

目录
第1章 绪论 - 1 -
1.1 图像复原研究的背景 - 2 -
1.2 研究的目的和意义 - 4 -
1.3 国内外的研究现状 - 5 -
1.4 本课题研究内容 - 7 -
第2章 图像复原的基本原理 - 8 -
2.1 图像失真及退化模型 - 9 -
2.1.1 图像失真 - 9 -
2.1.2 图像复原的退化模型 - 9 -
2.2图像恢复算法的基本理论 - 10 -
2.2.1 图像恢复的基本概念 - 11 -
2.2.2 逆滤波图像复原 - 11 -
2.2.3 盲图像复原 - 12 -
2.2.4常见图像恢复方法存在的问题 - 16 -
2.3 估计退化函数 - 17 -
第3章 遗传算法 - 19 -
3.1 遗传算法的起源及发展概况 - 19 -
3.2 遗传算法的基本思想 - 20 -
3.3 遗传算法的结构 - 22 -
3.4 遗传算法的特点 - 23 -
3.5 遗传算法的基本操作 - 24 -
第4章 遗传算法在失真图像复原中的应用 - 33 -
4.1遗传算法图像复原的具体操作及参数的确定 - 33 -
4.2 测试结果 - 35 -
第5章 程序调试及问题解决 - 38 -
5.1 程序编写过程 - 38 -
5.2 编程遇到的问题 - 38 -
第6章 结论 - 39 -
第7章 社会经济效益分析 - 40 -
参考文献 - 41 -
致 谢 - 44 -
附录 程序清单 - 1 -
1.4 本课题研究内容
本课题主要研究内容包括:
(1)讨论图像退化的原因,对传统的图像恢复方法进行分析;把图像的恢复转换成遗传算法寻优问题;建立图像恢复数学模型;
(2)深入研究遗传算法的原理,为本课题提供了研究的理论基础;
(3)针对现有图像遗传恢复算法存在的缺陷,从编码设计、种群初始化、遗传算子操作及更新机制;
(4)结合不同图像恢复实验(MATLAB7.0环境),分析各种图像恢复算法利弊。
(5)将图像复原算法与遗传算法相结合实现失真图像复原。
第1章介绍了课题研究的概况,包括背景、意义及目的。第2章阐述了图像复原的基本原理和一些经典图像复原算法。第3章重点介绍遗传算法的原理及操作过程。第4章将遗传算法运用到图像复原中,包括操作具体过程和参数的设定。第5章简单介绍了程序编写过程和运行时存在的问题。第6章总结了本本设计结果和意义。第7章分析了本设计社会经济效益。
4.2 测试结果
通过计算机Matlab7.0模拟上述图像复原操作,在实验仿真时,在Matlab7.0上编写遗传算法的图像复原的程序,在标准遗传算法程序的基础引入适应度函数,将该算法应用到图像复原程序中。在试验中,选用一幅彩色图像(图4.1),采用遗传算法,设定初始种群为30,迭代次数为20,运行Matlab程序的结果如下:
在这里插入图片描述

图4.1 模糊图片
在这里插入图片描述

图4.2 盲图像复原迭代10次图
在这里插入图片描述

图4.3 遗传算法复原图
以上图像恢复实验表明,遗传算法复原的图像要好于盲卷积复原法,复原的图像更清晰,效果比较能让人接受。
通常在信噪比较高时,采用遗传算法可以取得比逆滤波较好的效果;在信噪比较低时,算法可以有效地抑制噪声,恢复图像细节
从盲卷积复原算法的结果来看复原效果与迭代次数有关,这就需要人为附加的工作量来判断迭代次数的效果。盲图像复原需要从观察图像中以某种方式抽出退化信息,来找出图像复原方法。如要考虑加性噪声分量,其推导式就不成立,还需先对图像进行滤波处理,去掉噪再处理。
遗传算法在图像复原中能取得了较好的效果,图像较清晰。

%基于遗传算法的图像复原%
clear all;
close all;
G=20;
Size=10;
CodeL=10;
I=imread('py.jpg'); 
I=rgb2gray(I);
I=imresize(I,[max(size(I)),max(size(I))]);
 [f1,f2]=freqspace(size(I));
Hd=ones(size(I));
s=sqrt(f1.^2+f2.^2);
Hd(s>0.1)=0;
y=fft2(double(I));
y1=fftshift(y);
ya=y1.*Hd;
yaa=ifftshift(ya);
I=ifft2(yaa);
figure(1);
imshow(uint8(I));
xlabel('原始图像');
MinX(1)=0.0001*ones(1);
MaxX(1)=1*ones(1);
MinX(2)=0.0001*ones(1);
MaxX(2)=10*ones(1);
MinX(3)=0.0001*ones(1);
MaxX(3)=1*ones(1);
E=round(rand(Size,3*CodeL));    
BsJ=0;
for kg=1:1:G
time(kg)=kg;    
for s=1:1:Size
m=E(s,:);
y1=0;y2=0;y3=0;
m1=m(1:1:CodeL);
for i=1:1:CodeL
   y1=y1+m1(i)*2^(i-1);
end
Kpid(s,1)=(MaxX(1)-MinX(1))*y1/1023+MinX(1);
m2=m(CodeL+1:1:2*CodeL);
for i=1:1:CodeL
   y2=y2+m2(i)*2^(i-1);
end

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

目 录(版权归原作者所有) 第一章 绪论 .........................................1 §1-1 引言........................................................................................................................1 §1-2 研究的目的和意义................................................................................................1 §1-3 国内外的研究现状................................................................................................2 §1-4 本课题研究内容....................................................................................................3 第二章 图像复原中的基础知识 .........................4 §2-1 卷积反卷积........................................................................................................4 §2-2 二维离散卷积........................................................................................................5 §2-3 傅立叶变换离散傅立叶变换............................................................................5 §2-4 本章小结................................................................................................................7 第三章 失真图像复原理论 .............................8 §3-1 失真图像复原的基本原理....................................................................................8 3-1-1 失真图像复原的原理....................................................................................8 3-1-2 失真图像的退化模型....................................................................................8 §3-2 失真图像的几种复原方法....................................................................................9 3-2-1 逆滤波图像复原...........................................................................................9 3-2-2 最小二乘滤波图像复原.............................................................................10 3-2-3 维纳滤波图像复原.....................................................................................11 3-2-4 最大熵复原.................................................................................................11 §3-3 运动模糊图像复原..........................................................................................12 3-3-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shejizuopin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值