1.前言
权重文件是预训练模型的关键部分,它们存储了网络在大量数据上学习到的参数。这些参数使得模型可以直接用于新的图像数据,而无需从头开始训练。
YOLOv8的不同变体(如YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l和YOLOv8x)主要区别在于模型的大小、复杂度、准确性和运行速度。这些差异通常是通过调整模型的深度(层数)、宽度(每层的通道数)以及其他参数来实现的。
-
Model: 列出了 YOLOv8 的不同变体,包括 YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l 和 YOLOv8x,这些可能是不同大小或性能配置的模型。
-
size (M): 模型的权重大小,单位是兆字节(MB)。
-
mAp@50-95: 模型的平均精度均值(mean Average Precision),在 IoU(交并比)阈值从 50% 到 95% 范围内的变化。这是一个衡量目标检测模型性能的关键指标,数值越高表示模型性能越好。
-
Speed (CPU ONNX) (ms): 模型在 CPU 上运行时,使用 ONNX(Open Neural Network Exchange)格式的推理速度,单位是毫秒(ms)。
-
Speed (A100) (ms): 模型在 NVIDIA A100 GPU 上运行时的推理速度,单位是毫秒(ms)。A100 是一款高性能的 GPU,常用于深度学习和科学计算。
-
Speed (TensorRT) (ms): 模型在使用 NVIDIA TensorRT 优化后的推理速度,单位是毫秒(ms)。TensorRT 是一个深度学习推理引擎,可以优化模型以加快在 NVIDIA GPU 上的运行速度。
-
params: 模型的参数总数。
-
FLOPS: 模型运行时所需的浮点运算次数(Floating Point Operations Per Second),通常用来衡量模型的计算复杂度。
-
(pixels): 这可能指的是模型处理图像的分辨率,但在这个表格中没有具体数值。
2.变体的具体区别
YOLOv8n (Nano):
最小的版本,适用于资源受限的设备或需要极高推理速度的应用场景。
参数数量较少,模型较小。
准确性相对较低,但处理速度快。
YOLOv8s (Small):
较小的版本,适合中低端GPU。
比YOLOv8n更准确,但速度稍慢。
层数和参数量都比Nano版本多。
YOLOv8m (Medium):
中等大小的版本,提供较好的准确性和速度平衡。
模型参数量和计算复杂度高于Small版本。
在许多应用场景中是一个不错的选择。
YOLOv8l (Large):
较大的版本,提供更高的准确性。
参数量和计算复杂度进一步增加。
推理速度较慢,但检测准确度更高。
YOLOv8x (X-Large):
最大的版本,具有最高的准确性。
参数量最大,模型最复杂。
推理速度最慢,适合对准确度要求极高的应用。
YOLOv8n: 225层,约315万参数,8.9 GFLOPs。
YOLOv8s: 225层,约1117万参数,28.8 GFLOPs。
YOLOv8m: 295层,约2590万参数,79.3 GFLOPs。
YOLOv8l: 365层,约4369万参数,超过165 GFLOPs。
YOLOv8x: 参数量和GFLOPs会比YOLOv8l更大。
这些变体可以根据不同的应用场景和硬件配置进行选择。例如,在实时视频分析或者移动设备上,可能更适合使用YOLOv8n或YOLOv8s;而在高性能服务器或云端环境中,则可以选择YOLOv8l或YOLOv8x以获得更高的检测精度。
3.权重文件下载
新方法
注意:如果需要v8的访问链接 https://github.com/ultralytics/assets/releases/ 点击跳转 ,GIthub往下多往下翻,在历史版本里
老方法,这个办法现在只能找到最新版yolov11
- GitHub地址:https://github.com/ultralytics/ultralytics 点击跳转~~
- 点击任务
- 点击左侧的Detect并找到下图Models所在位置
- 点击下载即可