MATLAB polyfit曲线拟合及拟合最高次幂的选择

polyfit:最小二乘多项式曲线拟合

已知离散点上的数据集,即已知在点集上的函数值,构造一个解析函数(其图形为一曲线)使在原离散点上尽可能接近给定的值。

函数:p = polyfit(x,y,n)

其中:x是已知的离散数据点的横坐标,y是已知离散数据点的纵坐标,

n为需要拟合的最高次幂,由我们给定,运用不同的多项式进行拟合,

返回值p从左到右是高次到低次的多项式p(x)的系数,长度是n+1

p(x)=p1xn+p2xn1+...+pnx+pn+1

函数:y=polyval(p,x);      %根据拟合的函数得出x对应的因变量y的值

多项式n的阶数的确定:

可以用MATLAB的拟合工具箱,cftool进行选择

在MATLAB主窗口中输入 cftool 回车 ,会弹出拟合工具箱界面


选择拟合的参数,在右上角选择拟合方式为“Polynomial”,然后通过选择不同的degree,看右下角看离散点是否落在拟合曲线是以及Results里的SSE(方差)和R-square(相关系数),上图中的拟合,可以看到离散点都落在了拟合线上,并且相关系数为1,方差在-9的数量级上,拟合良好。


### 如何评估和验证 MATLAB 中 `polyfit` 函数进行的曲线拟合结果准确性 为了全面评估和验证通过 `polyfit` 进行的多项式拟合的效果,可以采用多种方法来衡量其准确性和可靠性。 #### 使用决定系数 R² 来评价模型的好坏 R² 是一种常用的统计度量标准,用来表示数据之间的关系有多强。对于 `polyfit` 的输出结果而言,在计算得到回归直线之后可以通过下面的方式求得 R²: ```matlab % 已知x,y为原始数据向量,n代表所选次数 p = polyfit(x, y, n); % 计算n次多项式的系数 y_fit = polyval(p,x); SStot = sum((y-mean(y)).^2); SSres = sum((y-y_fit).^2); Rsquared = 1-(SSres/SStot); disp(['The coefficient of determination is ', num2str(Rsquared)]); ``` 该代码片段展示了如何基于 `polyfit` 和 `polyval` 函数构建预测值并进一步计算残差平方和与总离差平方和的比例从而得出 R² 值[^1]。 #### 可视化比较实际观测值与拟合后的趋势线 绘制散点图连同最佳匹配的趋势线有助于直观理解两者间的差异程度。这不仅能够帮助识别异常点还便于观察整体模式是否合理。 ```matlab plot(x, y,'o'); hold on; xlabel('Independent Variable'); ylabel('Dependent Variable'); title('Data Points and Fitted Curve'); xfit = linspace(min(x), max(x)); yfit = polyval(p, xfit); plot(xfit, yfit, '-r', 'LineWidth', 2); legend('Observed Data','Fitted Line') grid on; hold off; ``` 这段脚本实现了将原始数据点及其对应的理论估计值绘制成图形以便于对比分析[^2]。 #### 检查剩余误差分布情况 理想情况下,如果模型足够好,则残差应该随机分布在零附近而没有任何明显规律可循。因此,查看残差直方图或QQ图可以帮助判断是否存在潜在问题。 ```matlab figure(); subplot(2,1,1) histogram(residuals,'Normalization','pdf'); title('Residual Histogram') subplot(2,1,2) qqplot(residuals); title('Normal Probability Plot of Residuals') ``` 上述代码分别创建了一个正态概率图(QQ plot)以及标准化频率下的直方图用于展示残差特性[^3]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值