(6)同余式

同余式

整除性是研究数论的有力工具,这已在勾股数组、最大公因数与素数分解中得到了体现,同余式提供了一种描述整除性的简便方式。事实上同余式使得整除性理论非常类似于方程理论。

如果 m ∣ a − b m\mid a-b mab,我们就说a与b模m同余并记作

a ≡ b   ( m o d    m ) a\equiv b\ (\mod m) ab (modm)

例如

7 ≡ 2   ( m o d    5 ) , 47 ≡ 35   ( m o d    6 ) 7\equiv2\ (\mod5),47\equiv35\ (\mod 6) 72 (mod5),4735 (mod6)

特别地,如果a除以m得余数r,则a与r模m同余。注意余数满足 0 ≤ r < m 0\le r\lt m 0r<m,因而每个整数必有与 0 ∼ m − 1 0 \sim m-1 0m1之间的一个数模m同余。.

数m叫做同余式的模。具有相同模的同余式在许多方面表现很像等式,例如

a 1 ≡ b 1   ( m o d    m )   且   a 2 ≡ b 2   ( m o d    m ) a_1\equiv b_1\ (\mod m)\ 且\ a_2\equiv b_2\ (\mod m) a1b1 (modm)  a2b2 (modm)

a 1 ± a 2 ≡ b 1 ± b 2   ( m o d    m ) , a 1 a 2 ≡ b 1 b 2   ( m o d    m ) a_1\pm a_2\equiv b_1\pm b_2\ (\mod m),a_1a_2\equiv b_1b_2\ (\mod m) a1±a2b1±b2 (modm)a1a2b1b2 (modm)

但应注意的是用数除以同余式并非总是可能的,如果 a c ≡ b c   ( m o d    m ) ac\equiv bc\ (\mod m) acbc (modm),则 a ≡ b   ( m o d    m ) a\equiv b\ (\mod m) ab (modm)未必成立,只有 g c d ( c , m ) = 1 gcd(c,m)=1 gcd(c,m)=1时,结论才成立。

解同余式

我们可以使用解方程的方法来解同余式,例如

x + 12 ≡ 5   ( m o d    8 ) x+12\equiv 5\ (\mod 8) x+125 (mod8)

两边减去12得

x ≡ 5 − 12 ≡ 7   ( m o d    8 ) x\equiv 5-12\equiv 7\ (\mod 8) x5127 (mod8)

这个解是精确的,或者可用等价解 x ≡ 1   ( m o d    8 ) x\equiv 1\ (\mod 8) x1 (mod8)

下一个例子,解

4 x ≡ 3   ( m o d 19 ) 4x\equiv 3\ (mod 19) 4x3 (mod19)

我们用5乘以两边得出

20 x ≡ 15   ( m o d    19 ) 20x\equiv 15\ (\mod19) 20x15 (mod19)

20 ≡ 1   ( m o d    19 ) 20\equiv 1\ (\mod 19) 201 (mod19),所以 20 x ≡ x   ( m o d    19 ) 20x\equiv x\ (\mod 19) 20xx (mod19)因此,解是

x ≡ 15   ( m o d    19 ) x\equiv 15\ (\mod 19) x15 (mod19)

当然对于所有方法失效的同余式我们至少还有穷举法。

注意当我们在说“求同余式的所有解”时,是指求所有不同余的解,即相互不同余的所有解。

那我们可不可以给出一种求解一个同余式所有不同解的方法?

线性同余定理

a , c a,c a,c m m m是整数, m ≥ 1 m\ge1 m1,且设 g = g c d ( a , m ) g=gcd(a,m) g=gcd(a,m)
(a)如果 a ∤ c a\nmid c ac,则同余式 a ≡ c   ( m o d    m ) a\equiv c\ (\mod m) ac (modm)没有解。
(b)如果 a ∣ c a\mid c ac,则同余式 a ≡ c   ( m o d    m ) a\equiv c\ (\mod m) ac (modm)恰好有g个不同解。要求这些解,首先求线性方程

a u + m v = g au+mv=g au+mv=g

的一个解 ( u 0 , v 0 ) (u_0,v_0) (u0,v0)。则 x 0 = c u 0 g x_0=\frac{cu_0}{g} x0=gcu0 a x ≡ c   ( m o d    m ) ax\equiv c\ (\mod m) axc (modm)的解,不同余解的完全集由

x ≡ x 0 + k ∗ m g ( m o d    m ) , k = 0 , 1 , 2 , ⋯   , g − 1 x\equiv x_0+k*\frac{m}{g}(\mod m),k=0,1,2,\cdots,g-1 xx0+kgm(modm)k=0,1,2,,g1

给出。
证明现在我们假设任意同余式

a x ≡ c   ( m o d    m ) ax\equiv c\ (\mod m) axc (modm)
a x − c ≡ 0   ( m o d    m ) ax-c\equiv 0\ (\mod m) axc0 (modm)

如果存在一个整数y使

a x − c = m y ax-c=my axc=my
a x − m y = c ax-my=c axmy=c

那么同余式有解。
g = g c d ( a , m ) g=gcd(a,m) g=gcd(a,m)

a u + m v = g au+mv=g au+mv=g

一定有解。那么如果 g ∣ c g\mid c gc那么同余式一定有解,否则一定没解。
通过欧几里得或尝试法可以求得解 u = u 0 , v = v 0 u=u_0,v=v_0 u=u0,v=v0,下面假设 g ∣ c g\mid c gc,所以可用整数 c g \frac{c}{g} gc乘以这个方程得

a c u 0 g + m c v 0 g = c a\frac{cu_0}{g}+m\frac{cv_0}{g}=c agcu0+mgcv0=c

这说明

x 0 ≡ c u 0 g ( m o d    m ) x_0\equiv \frac{cu_0}{g}(\mod m) x0gcu0(modm)是同余式 a x ≡ c   ( m o d    m ) ax\equiv c\ (\mod m) axc (modm)的解

我们知道同余式会有多个不同的解,假设x1是同余式 a x ≡ c   ( m o d    m ) ax\equiv c\ (\mod m) axc (modm)的其他解,则 a x 1 ≡ a x 0   ( m o d    m ) ax_1\equiv ax_0\ (\mod m) ax1ax0 (modm),所以m整除 a x 1 − a x 0 ax_1-ax_0 ax1ax0。则有

m a 整 除 a ( x 1 − x 0 ) g \frac{m}{a}整除\frac{a(x_1-x_0)}{g} amga(x1x0)

我们已知 m g \frac m g gm a g \frac a g ga没有公因数,从而 m g \frac m g gm必整除 x 1 − x 0 x_1-x_0 x1x0。有

x 1 = x 0 + k ∗ m g x_1=x_0+k*\frac m g x1=x0+kgm

但相差m的倍数的任何两个解被认为是相同的,所以恰好有g个不同的解,这些解通过取 k = 0 , 1 , ⋯   , g − 1 k=0,1,\cdots,g-1 k=0,1,,g1而得到。

对于 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1的情况,同余式恰好只有一个解。我们甚至可以将解写成分数

x = c a   ( m o d    m ) x=\frac{c}{a}\ (\mod m) x=ac (modm)

我们有了线性同余式的求解方法,接下来研究非线性的同余式。

模p多项式根定理

设p为素数,

f ( x ) = a 0 x d + a 1 x d − 1 + ⋯ + a d f(x)=a_0x^d+a_1x^{d-1}+\cdots+a_d f(x)=a0xd+a1xd1++ad

是次数为 d ≥ 1 d\ge 1 d1的整系数多项式,且 p ∤ a 0 p\nmid a_0 pa0,则同余式

f ( x ) ≡ 0   ( m o d    p ) f(x)\equiv 0\ (\mod p) f(x)0 (modp)

最多有d个模p不同于的解。
证明我们首先假设至少存在一个首项系数不被p整除的整系数多项式 F ( x ) F(x) F(x),使得同余式 F ( x ) ≡ 0   ( m o d    p ) F(x)\equiv 0\ (\mod p) F(x)0 (modp)模p不同余的根的个数大于 F ( x ) F(x) F(x)的次数

F ( x ) = A 0 x d + A 1 x d − 1 + ⋯ + A d F(x)=A_0x^d+A_1x^{d-1}+\cdots+A_d F(x)=A0xd+A1xd1++Ad

其中

r 1 , r 2 , ⋯   , r d + 1 r_1,r_2,\cdots,r_{d+1} r1,r2,,rd+1

是同余式 F ( x ) = 0   ( m o d    p ) F(x)=0\ (\mod p) F(x)=0 (modp)模p不同余的解。
对于任意r有

F ( x ) − F ( r ) = A 0 ( x d − r d ) + A 1 ( x d − 1 − r d − 1 ) + ⋯ + A d − 1 ( x − r ) F(x)-F(r)=A_0(x^d-r^d)+A_1(x^{d-1}-r^{d-1})+\cdots+A_{d-1}(x-r) F(x)F(r)=A0(xdrd)+A1(xd1rd1)++Ad1(xr)

由于

x i − r i = ( x − r ) ( x i − 1 + x i − 2 r + ⋯ + x r i − 2 + r i − 1 ) x^i-r^i=(x-r)(x^{i-1}+x^{i-2}r+\cdots+xr^{i-2}+r^{i-1}) xiri=(xr)(xi1+xi2r++xri2+ri1)

因此 F ( x ) − F ( r ) F(x)-F(r) F(x)F(r)每一项都可以提出 x − r x-r xr这个因式,提取多项式 x − r x-r xr,即存在

G ( x ) = B 0 x d − 1 + ⋯ + B d − 1 G(x)=B_0x^{d-1}+\cdots+B_{d-1} G(x)=B0xd1++Bd1

使得

F ( x ) = F ( r ) + ( x − r ) G ( x ) F(x)=F(r)+(x-r)G(x) F(x)=F(r)+(xr)G(x)

特别地,取 r = r 1 r=r_1 r=r1,由 F ( r 1 ) ≡ 0   ( m o d    p ) F(r_1)\equiv 0\ (\mod p) F(r1)0 (modp)

F ( x ) = ( x − r 1 ) G ( x )   ( m o d    p ) F(x)=(x-r_1)G(x)\ (\mod p) F(x)=(xr1)G(x) (modp)

我们已经假设了 F ( x ) ≡ 0   ( m o d    p ) F(x)\equiv 0\ (\mod p) F(x)0 (modp)有d+1个不同余的解 x = r 1 , r 2 , r 3 , ⋯   , r d + 1 x=r_1,r_2,r_3,\cdots,r_{d+1} x=r1,r2,r3,,rd+1,让x取某一个解 r k   ( k ≥ 2 ) r_k\ (k\ge2) rk (k2)

0 ≡ F ( x ) = ( r k − r 1 ) G ( r k )   ( m o d    p ) 0\equiv F(x)=(r_k-r_1)G(r_k)\ (\mod p) 0F(x)=(rkr1)G(rk) (modp)

因为 r k , r 1 r_k,r_1 rk,r1模p不同余,由素数整除性质得 G ( r k ) ≡ 0   ( m o d    p ) G(r_k)\equiv0\ (\mod p) G(rk)0 (modp),综上 r 2 , r 3 , ⋯   , r d + 1 r_2,r_3,\cdots,r_{d+1} r2,r3,,rd+1都是 G ( x ) G(x) G(x)的解,于是一个d-1次方的方程有了d个模p不同余的解,显然这是错误的,这表明没有多项式模p不同余的根的个数大于它的次数,得证。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值