数论概论读书笔记 8.同余式

同余式

整除性是很好的性质,这在勾股数组、最大公因数与素数分解中得到了体现。

而同余式提供了一种描述整除性质的简便方式。

如果 m|(ab) m | ( a − b ) ,我们就说a与b模m同余并记之为 ab(mod m) a ≡ b ( m o d   m )

特别地, aa%m(mod m) a ≡ a % m ( m o d   m )

数m叫做同余式的。 具有相同模的同余式在许多方面表现得很像通常的等式。例如:

a1b1(mod m)a2b2(mod m) a 1 ≡ b 1 ( m o d   m ) a 2 ≡ b 2 ( m o d   m ) a1±a2b1±b2(mod m) a 1 ± a 2 ≡ b 1 ± b 2 ( m o d   m ) a1a2b1b2(mod m) a 1 a 2 ≡ b 1 b 2 ( m o d   m )

acbc(mod m) a c ≡ b c ( m o d   m ) 时,未必有 ab(mod m) a ≡ b ( m o d   m ) 如果 gcd(c,m)=1 g c d ( c , m ) = 1 可以消去c

如果同余式含有未知数,我们考虑如何求解

首先考虑“穷举法” ,要解模m同余式,可让每个变量试取0,1,2…,m-1 例如,解同余式

x2+2x10(mod 7) x 2 + 2 x − 1 ≡ 0 ( m o d   7 )

就去试 x=0,x=1,...,x=6 x = 0 , x = 1 , . . . , x = 6 这导出两个解 x2(mod 7) x ≡ 2 ( m o d   7 ) x3(mod 7) x ≡ 3 ( m o d   7 ) 当然还有其他解,但新的解与2或3是同余的,如9。当我们说“求同余式的所有解时”,是指求所有不同余的解,即相互不同余的所有解。

许多同余式是没有解的,如 x23(mod 10) x 2 ≡ 3 ( m o d   10 )

下面考虑如何求解同余式 axc(mod m) a x ≡ c ( m o d   m )

试解一个例子,解同余式

18x8(mod 22) 18 x ≡ 8 ( m o d   22 )

等价于求 22|(18x8) 22 | ( 18 x − 8 ) 即求 18x22y=8 18 x − 22 y = 8 解这类方程的问题在第六章中研究过。

对于 axc(mod m) a x ≡ c ( m o d   m ) ,其有解当且仅当 线性方程 axmy=c a x − m y = c 有解

由前可知,线性方程 axmy=c a x − m y = c 有解的充分必要条件是 gcd(a,m)|c g c d ( a , m ) | c

且方程 au+mv=g a u + m v = g 一定有解 ,设一个解为 (u0,v0) ( u 0 , v 0 ) 则有

acu0g+mcv0g=c a c u 0 g + m c v 0 g = c

这说明 x0cu0g(mod m) x 0 ≡ c u 0 g ( m o d   m ) 是同余式 axc(mod m) a x ≡ c ( m o d   m ) 的一个解

通解 x=x0+kmg x = x 0 + k ⋅ m g

由于相差m的倍数的任何两个解认为是相同的,所有恰好有 g g 个不同的解,这些解通过取k=0,1,2...,g1而得到。将上述过程概述为定理:

定理8.1(线性同余式定理). 设a,c与m是整数,m>=1,且设 g=gcd(a,m) g = g c d ( a , m )

(a) 如果 gc g ∤ c ,则同余式 axc(mod m) a x ≡ c ( m o d   m ) 没有解

(b) 如果 g|c g | c ,则同余式 axc(mod m) a x ≡ c ( m o d   m ) 恰好有g个不同的解。要求这些解,首先求线性方程 au+mv=g a u + m v = g 的一个解 (u0,v0) ( u 0 , v 0 ) (欧几里得回带法,在计算机上递归求得,称为扩展欧几里得算法) 。则 x0=cu0/g x 0 = c u 0 / g axc(mod m) a x ≡ c ( m o d   m ) 的解,不同余解的完全集由

xx0+kmgmod m),k=0,1,2,...,g1 x ≡ x 0 + k ⋅ m g ( m o d   m ) , k = 0 , 1 , 2 , . . . , g − 1

给出。(由于只需要求解x,y这里正负符号就没讨论)

例如,同余式 943x381(mod 2576) 943 x ≡ 381 ( m o d   2576 ) 无解,这是因为 gcd(943,2576)381 g c d ( 943 , 2576 ) ∤ 381 ,另一方面,同余式

893x266(mod 2432) 893 x ≡ 266 ( m o d   2432 )

有19个解,因为 gcd(893,2432)=19, 19|266 g c d ( 893 , 2432 ) = 19 ,   19 | 266 这个19即为不同余解的个数(不需要其他计算)

下面解方程 893u2432v=19 893 u − 2432 v = 19 ,使用欧几里得回带法可以求得解 (u,v)=(79,29) ( u , v ) = ( 79 , 29 ) ,乘以266/19=14得方程 893x2432y=266 893 x − 2432 y = 266 的解 (x,y)=(1106,406) ( x , y ) = ( 1106 , 406 ) ,即1106是同余式方程的一个解,这样的互不同余的解共有19个。1106加上2432/19=128的倍数(%2432)就可得到完全解集。

线性同余式定理最重要的情形是 gcd(a,m)=1 g c d ( a , m ) = 1 ,在这种情形下,同余式恰好有一个解。

对于非线性的同余式,其解“不是很确定”。

我们熟悉的是对于一个d次实系数多项式的实根不超过d个 ,这个结论对于同余式并不成立。

例如 x2+x0(mod 6) x 2 + x ≡ 0 ( m o d   6 ) 有4个模6不同的根:0,2,3,5

但是,当p为素数时,这个结论依然成立

定理8.2(模p多项式根定理). 设p为素数, f(x)=a0xd+a1xd1+...+ad f ( x ) = a 0 x d + a 1 x d − 1 + . . . + a d 是次数为d>=1的整系数多项式,且p不整除 a0 a 0 ,则同余式 f(x)0(mod p) f ( x ) ≡ 0 ( m o d   p ) 最多有d个模p不同余的解。

这个定理的证明用到了反证法,和素数整除性质

假设方法:设至少存在一个首项系数不被p整除的整系数多项式 F(x) F ( x ) ,使得同余式 F(x)0(mod p) F ( x ) ≡ 0 ( m o d   p ) 模p不同余的根的个数大于 F(x) F ( x ) 的次数,在所有这样的多项式中选择一个次数最低的,设为 F(x)=A0xd+A1xd1+...+Ad F ( x ) = A 0 x d + A 1 x d − 1 + . . . + A d , 让 r1,r2,...,rd+1 r 1 , r 2 , . . . , r d + 1 是同余式 F(x)0(mod p) F ( x ) ≡ 0 ( m o d   p ) 模p不同余的解。

具体内容见P41面

素数整除性质相当重要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值