sigmoid/softmax指数运算溢出问题
sigmoid/softmax指数运算溢出问题
sigmoid和softmax函数在计算中,都会用到指数运算 e − x e^{-x} e−x或 e x e^{x} ex,如果在 e − x e^{-x} e−x中 x x x是一个很小的负数,如-128等,或者在 e x e^{x} ex中 x x x是一个很大的正数,如128等,这时有溢出的风险。
而sigmoid和softmax的结果是一个在0~1之间的值,所以可以看到这种溢出只是一种中间过程,对于结果来说并不会有溢出,来看下如何去解决这个问题
解决 s i g m o i d sigmoid sigmoid函数溢出问题
1.如果 x > 0 x>0 x>0则 y = 1 1 + e − x y=\frac{1}{1+e^{-x}} y=1+e−x1
2.如果 x < 0 x<0 x<0则 y = e x 1 + e x y=\frac{e^{x}}{1+e^{x}} y=1+exex
python代码如下:
import numpy as np
def sigmoid(x):
if x >= 0:
return 1 / (1 + np.exp(-x))
else:
return np.exp(x) / (1 + np.exp(x))
解决LR模型中计算cross entropy溢出问题
1.label记为 y y y
2. 记 z = 1 1 + e − x z=\frac{1}{1+e^{-x}} z=1+e−x1
c r o s s e n t r o p y = y ∗ − l o g ( s i g m o i d ( z ) ) + ( 1 − y ) ∗ − l o g ( 1 − s i g m o i d ( z ) ) cross entropy=y*-log(sigmoid(z))+(1-y)*-log(1-sigmoid(z)) cros