解决sigmoid/softmax指数运算溢出问题及python实现

sigmoid/softmax指数运算溢出问题

sigmoid和softmax函数在计算中,都会用到指数运算 e − x e^{-x} ex e x e^{x} ex,如果在 e − x e^{-x} ex x x x是一个很小的负数,如-128等,或者在 e x e^{x} ex x x x是一个很大的正数,如128等,这时有溢出的风险。
而sigmoid和softmax的结果是一个在0~1之间的值,所以可以看到这种溢出只是一种中间过程,对于结果来说并不会有溢出,来看下如何去解决这个问题

解决 s i g m o i d sigmoid sigmoid函数溢出问题

1.如果 x > 0 x>0 x>0 y = 1 1 + e − x y=\frac{1}{1+e^{-x}} y=1+ex1

2.如果 x < 0 x<0 x<0 y = e x 1 + e x y=\frac{e^{x}}{1+e^{x}} y=1+exex
python代码如下:

import numpy as np
def sigmoid(x):
    if x >= 0:
        return 1 / (1 + np.exp(-x))
    else:
        return np.exp(x) / (1 + np.exp(x))

解决LR模型中计算cross entropy溢出问题

1.label记为 y y y
2. 记 z = 1 1 + e − x z=\frac{1}{1+e^{-x}} z=1+ex1

c r o s s e n t r o p y = y ∗ − l o g ( s i g m o i d ( z ) ) + ( 1 − y ) ∗ − l o g ( 1 − s i g m o i d ( z ) ) cross entropy=y*-log(sigmoid(z))+(1-y)*-log(1-sigmoid(z)) cros

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值