深入剖析神经网络的运行机理及实现

本文介绍了基于神经网络的手写体数字识别模型,详细阐述了模型的运行机理,包括神经网络结构、训练过程中的前向传导、反向传播和参数更新,并提供了简单的实现代码。通过sklearn的digit数据集进行训练,展示了如何从数据加载到模型训练,最终评估模型的分类性能。
摘要由CSDN通过智能技术生成

随着大数据和机器硬件水平的提升,神经网络特别是深度神经网络现在是大火特火。因为目前的深度学习模型都是基于神经网络进行的改进和加深,所以要想对深度学习有一些较深入的研究,先熟悉和了解人工神经网络是非常有帮助的。

本文基于神经网络实现一个手写体数字识别模型,此处使用的数据集为sklearn自带的digit数据,只要装了sklearn就可以直接获得。

1、手写体人工神经网络模型


这里写图片描述
图(一),mnist手写体数字识别网络结构,见【参考一】

神经网络是一个判别模型,它会利用训练集学到一个从输入到输出的映射关系,结构上可以分为输入层、隐藏层和输出层,如上图。输入层用于接收数据的输入,通过隐藏层的处理,最后经输出层转换得到输出。

上图为基于mnist数据集画的一个神经网络模型,因为mnist一张图片为28*28=784,故输入层有784个神经元。而digit的图片为8*8=64,故digit数据集的输入层有64个神经元,也就是说我们将要实现的神经网络输入层有64个神经元,要简单很多。

神经网络的性能如何,隐层的设计非常关键,隐藏层是设计用来自动学习特征的,通过这些学到的特征来进行最后一层的分类任务,那它会学到什么东西呢?在手写体数字识别中,大概会学到这样的特征:


这里写图片描述
图(二)

再具体一点就是,该图中的隐层我们共设置了15个神经元,每一个神经元存储的都是学来的特征,假设前四个神经元是用来考察手写数字是否满足以下这四个特征,

这里写图片描述 这里写图片描述
图(三)

有了隐层学到的这些东西,那么对它进行组合判断就很容易得到输出了,例如发现上面的四个特征均被激活,则如我们所知,其有很大的概率表示数字0。

2、运行机理及实现

在有监督学习中,模型会分为训练阶段和预测阶段,在训练阶段将模型中的待定参数学习出来,然后用在预测阶段,就好像我们初中求解带参方程 ax+b=y 一样,首先通过已知条件把方程中的参数给求解出来,然后再利用求出来的参数计算给定 x 下的 y 值。

在神经网络的训练阶段,主要包括以下几步:
(1)加载训练集;
(2)前向传导,将信息传递给输出层;
(3)利用标注信息和代价函数来计算代价;
(4)通过反向传播代价函数梯度来更新每一层中的参数
其简单实现的整体代码如下:

#coding=utf-8
'''
Created on Jul 20, 2016
'''
import numpy as np
import random
from sklearn import datasets
class Network(object):
    def __init__(self,sizes):
        '''
        parameters:
            sizes中保存了神经网络各层神经元个数
        functions:
                            对神经网络层与层之间的连接参数进行初始化
        '''
        #权重矩阵
        self.weights = [np.random.randn(y,x) for x,y in zip(sizes[:-1],sizes[1:])]
        #偏置矩阵
        self.biases = [np.random.randn(x) for x in sizes[1:]]

    def init_parameters(self,parameters):
        '''
            functions:初始化模型参数
            parameters主要包括:
                epochs:迭代次数
                mini_batch_size:批处理大小
                eta:学习率
                nnLayers_size:神经网络层数
        '''
        self.epochs = parameters.get("epochs")
        self.mini_batch_size = parameters.get("mini_batch_size")
        self.eta = parameters.get("eta")
        self.nnLayers_size = parameters.get("nnLayers_size")

    def load_data(self):
        '''
            functions:加载数据集,这里使用的是sklearn自带的digit手写体数据集
        '''
        digits = datasets.load_digits()
        return digits.data, digits.target

    def feed_forword(self,data):
        '''
            parameters: 
                data:输入的图片表示数据,是一个一维向量
            functions:前向传导,将输入传递给输出,y = w*x + b
            return:传递到输出层的结果
        '''
        for w, b in zip(self.weights, self.biases):
            z = np.dot(w,data) + b
            data = self.sigmoid(z)
        return data

    def sigmoid(self,z):
        '''
            functions:sigmoid函数
        '''
        return 1.0/(1.0+np.exp(-z))

    def crossEntrop(self,a, y):
        '''
            parameters:
                a:预测值
                y:真实值
            functions:交叉熵代价函数f=sigma(y*log(1/a))
        '''
        return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))

    def delta_crossEntrop(self,z,a,y):
        '''
            parameters:
                z:激活函数变量
                a:预测值
                y:真实值
        '''
        return self.sigmoid(z) - y

    def SGD(self,data):
        '''
            function:随即梯度下降算法来对参数进行更新
            parameters:
                data:数据集
        '''
        #数据集大小
        data_len = len(list(data))
        for _ in range(self.epochs):
            #将数据集按照指定大小划分成小的batch进行梯度训练,mini_batchs中的每个元素相当于一个小的样本集<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值