一些数论基础

素数

(a,b)为最大公因数,最小公倍数[a,b]=a*b/(a,b)
如果(a,b)=1,则a和b互素

引理1:若p是素数,a是任意整数,则有 p|a或(p,a)=1
即素数与一个数要么互素,要么可整除该数。
引理2:若p是素数,p|ab ,则 p|a或p|b

定理1:

任意给定两个整数a,b,其中b>0,则存在唯一两个整数q和r,使得a=q*b+r

定理2:

设a,b,c是任意不全为0的整数,满足a=q*b+c,其中q是整数,则有(a,b)=(b,c)
即被除数和除数的最大公因子与除数和余数最大公因子相同。
例如:
(18,12)=(12,6)=(6,0)=6
(11,10)=(10,1)=(1,0)=1

辗转相除法(欧几里得算法)

任给两个整数a,b,设 a>b>0,由代余数的除法,有下列等式:
a = bq1 + r1 ,0 < r1<b,
b = r1
q2 + r2 ,0 <r2<r1,
…… (1)
rn-2 = rn-1qn + rn ,0 <rn<rn-1
rn-1= rn
qn+1 + rn+1,rn+1 = 0
因为b> r1 > r2 > r3 > …, 故经有限次代余数除法后,总可以得到
一个余数是零,即上式中rn+1 = 0。

定理3:

任意整数a>b>0,则(a,b)=rn,也就是最后一个不等于0的余数

定理4:

任意整数a>b>0,存在两个整数m,n,使得(a,b)=ma+nb
由这可以推得a和b的公因数就是(a,b)的因数

定理5(整数的唯一分解性定理):

任意整数a (a>1)都能唯一地分解为以下形式:
a=(p1^α1)*(p2^α2)…(pk^αk)
其中,p1<=p2<=…<=pk是素数,αi>0,
例如 120=2^335

推论:
若d | a,则d=(p1\x1)*(p2^x2)…(pkxk);其中0<=x1<=α1,…,0<=xk<=αk
例如120的所有因子都可以表现为(2^x1)(3^x2)5^x3),0<=x1<=3,0<=x2<=1,0<=x3<=1
所以120所有可能的因数为4
2
2=16,记作D(120)=16

推广到一般情况,a为整数,则a的因数个数D(a)=(α1+1)*(α2+1)…(αk+1)

定理5:

a是一个完全平方数,则D(a)是一个奇数
一个有意思的例子:拉灯问题

待续…

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值