【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【思路篇】A题解题全流程(持续更新)

写在前面:

1、A题、C题将会持续更新,陆续更新发布文章

2、全家桶依旧包含:


- 代码、
- 数据集、
- 模型、
- 论文、
- 教学视频、
- 服务器镜像分享(无需搭建环境和下载模型)、
- 售后服务
- 赠品成品系统(基于大模型pdf提取系统)可用做毕设

获取链接

请移步CSDN社区

CSDN社区获取

一、解题思路

实现技术: RapidLayout+Qwen2.5VL-7B+OCR+clip+Qwen2.5-7B-chat

总体思路概述:

  • 问题一:版面分析对pdf每一页进行布局分析,结合ocr、多模态大模型进行内容信息提取,处理细节解决问题。保存正文内容、图片、公式入库储存用于后续任务。
  • 问题二:本地构建部署Qwen2.5-7B-chat进行调用,对保存的正文内容与赛题要求进行大模型分析,微调模型输出参数,降低模型幻觉,增加消息队列防止同一问题,输出回答错乱。
  • 问题三:根据问题一入库保存的图片、公式,进行clip构建图像侧特征矩阵,根据特征相似度进行重复率判断。以及pdf属性为文本的论文文本内容,进行构建文本侧特征矩阵。进行相似度匹配查重。
  • 问题四:对于图片占比过高的论文pdf,结合版面分析+ocr,对pdf全提取,提取全文本,对文本特征进行相似度匹配,作为权重1;再将所以pdf页面作为图片,构建图像侧特征矩阵,做相似度匹配,作为权重2。最终根据权重综合得出该类论文的重复率。

二、版面分析结果:

在这里插入图片描述
在这里插入图片描述

输出数据结构

json

样例:

{
  "参赛队号": "T001",
  "论文标题": "基于深度学习的文档分析研究",
  "总页数": 12,
  "总字数": 8500,
  "摘要": {"页数": 1, "字数": 300},
  "正文": {
    "页数": 8,
    "字数": 6500,
    "图片数": 6,
    "图片比例": 0.15,
    "表格数": 3,
    "公式数": 12
  },
  "段落统计": {
    "数量": 45,
    "平均句子": 3.2,
    "平均字数": 144
  },
  "参考文献": {"数量": 28},
  "附录": {"页数": 2, "代码行数": 150}
}

在这里插入图片描述

三、大模型本地实现处理分析:

在这里插入图片描述

在这里插入图片描述

主要分享思路,后续做完整体再继续更新全部

相关文章

【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)

【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【论文篇+改进】A题解题全流程(持续更新)

<think>好的,我现在需要帮助用户了解泰迪数据挖掘大赛的相关信息和资源。首先,我需要整理用户提供的参考引用中的信息,并结合自己的知识库来提供有用的回答。 首先,用户提供了五个引用,分别来自不同届数的泰迪比赛。引用[1]和[4]是关于第十二届B解题流程,涉及多模态特征融合的图像文本检索。引用[2]是2020年A的总结,提到了比赛后的反思。引用[3]是第三届的经验分享,提到了团队配置和参赛经历。引用[5]是第十届B的电力负荷预测,给出了解题思路和部分代码,并提到了论文撰写的建议。 用户的问是关于泰迪数据挖掘大赛的信息或资源,包括资料、教程等。我需要从这些引用中提取有用的信息,并结合一般性的比赛建议来组织回答。 首先,我应该介绍泰迪的基本情况,比如举办届数、比赛内容、参赛形式等。然后,根据引用内容,可以提到往届赛解题思路,例如引用中的B、A等,并说明这些资源如何帮助备赛。此外,引用[3]和[5]中提到的经验总结和论文撰写建议也是重要部分,可以作为备赛技巧。 接下来需要生成相关问,可能包括如何备赛、历届赛分析、资源获取途径等。需要确保问与用户需求相关,并覆盖不同方面。 在回答时,要注意引用格式,例如在提到某届比赛时添加对应的引用标识。例如,当提到第十二届B时,添加[^4],当提到第三届经验时添加[^3],等等。 需要确保回答结构清晰,分点列出,帮助用户逐步了解比赛信息、资源获取途径和备赛建议。同时,检查是否有遗漏的信息点,比如是否有官方资料、社区论坛等资源。 最后,验证所有引用的使用是否正确,是否符合用户提供的参考内容,并确保LaTeX格式正确,没有语法错误。</think>### 泰迪数据挖掘大赛信息与资源整理 #### 一、比赛基本信息 1. **赛事性质** 泰迪数据挖掘挑战赛是由中国产学研合作促进会主办的全国性竞赛,侧重实际数据挖掘,覆盖预测、分类、多模态融合等方向(如2024年B基于多模态特征融合的图像文本检索)。 2. **赛类型** - **技术赛**:如第三届技能赛要求从数据处理到模型部署全流程实现[^3] - **应用赛**:如第十届B电力系统负荷预测分析[^5]、第十二届B多模态检索[^4] - **数据形式**:结构化数据(如上市公司财务数据)、非结构化数据(如图像文本) 3. **参赛建议** - **团队配置**:建议跨专业组队(如第三届获奖团队含数学、计算机、经管学生) - **论文重点**:突出单点创新(如数据处理方法改进),通过可视化对比模型效果[^5] --- #### 二、资源获取途径 1. **官方资源** - 官网提供往届赛与优秀论文(如2020年A参赛总结[^2]) - 第十二届B解题全流程文档 2. **技术教程** ```python # 示例:第十届B负荷预测代码片段 import pandas as pd from sklearn.ensemble import RandomForestRegressor def load_forecast(data): X = data[['temperature', 'holiday_flag']] y = data['load'] model = RandomForestRegressor() model.fit(X, y) return model ``` 3. **经验分享** - 第三届一等奖团队建议:注重数据清洗与模型解释性[^3] - 第十届特等奖答辩经验:模型对比需量化指标提升率 --- #### 三、备赛策略 1. **关键能力培养** - 多模态特征融合技术(第十二届核心考点[^4]) - 时间序列预测方法(如ARIMA、LSTM在电力负荷预测中的应用) 2. **论文撰写要点** $$ F_1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} $$ 需在论文中明确评估指标计算过程 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

葡萄成熟时_

谢谢您,祝您生活愉快,所想及得

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值