MP3音频文件体积怎么缩小?压缩的方法有哪些?

压缩音频文件可减小文件的大小,从而更轻松地上传到其他平台,或轻松的通过电子邮件进行分享。除此之外,压缩音频文件还可以节省硬盘上的储存空间。那MP3音频文件体积怎么缩小呢?继续阅读可查看压缩的详细流程。

什么是音频文件压缩?

音频文件压缩意味着简单地减小音频文件大小,同时保持原始数据完整。关键是您可以节省存储空间,并且可以更轻松地将文件传输给其他人。

压缩的第一种方法:使用金狮视频助手

金狮视频助手是一款多功能音视频编辑工具,它包含视频压缩、合并、剪辑,以及音频文件的压缩。要在Windows/macOS上压缩音频文件,应首先安装此音频压缩软件,因金狮视频助手是压缩速度很快的音视频文件工具之一,受到了很多用户的喜爱。

第一步:打开你电脑上安装的金狮视频助手,如果没有此软件,可先在官网进行下载安装再将其打开。软件打开后,可在首界面看到4个模块,我们点击“工具”模块,在此模块中找到“音频压缩”小工具,然后点击它。

第二步:此时将弹出添加音频文件的界面,点击“+”将需要压缩的MP3音频文件添加进来。

第三步:MP3音频文件添加进来后,我们可以通过更改音频的比特率、采样率、声道来缩小 MP3 文件。你还可以设置比特率预设或自定义比特率以获得更好的压缩效果。

设置好后,点击右下角的“压缩”按钮即可压缩MP3音频文件。

压缩的第二种方法:使用VLC播放器

如果你在电脑上安装了 VLC 作为媒体播放器,则还可以将其用作基本的压缩工具。虽然 VLC 在音频压缩方面提供的选项比金狮视频助手少,步骤多,但如果你电脑有此款软件又不想安装第三方软件,是可以尝试下的。

第一步:启动 VLC,转到媒体 > 转换/保存选项。(快捷键是 Ctrl + R,Mac 为 cmd+R)

第二步:在文件选择中,添加要压缩的音频文件,然后单击转换/保存按钮。

第三步:在新弹出的转换窗口中,管理音频压缩设置。

在配置文件中,选择音频-MP3,然后单击扳手图标。

单击“音频编解码器”选项卡,然后调整采样率。您可以在 VLC 中选择 8000 Hz、11025 Hz、22050 Hz、44100 Hz 和 48000 Hz。由于您想将音频压缩为更小的尺寸,因此可以使用 44100 Hz 以下的频率。

您可以将比特率保留为 128 kb/s。

第四步:单击保存以保存配置文件的设置。

第五步:单击“浏览”指定输出文件夹。

第六步:单击开始压缩音频文件即可。

总结

阅读完这篇文章后,相信你已经了解到了什么是音频文件压缩,以及如何去压缩。本文提供了2种压缩MP3音频文件的方法,你可以选择其中一种进行操作。金狮视频助手相比于VLC操作简单,但如果你不想安装第三方软件且电脑又装有VLC的话,也是可以直接使用VLC去进行压缩的,就是步骤有那么一点点繁琐。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值