Pseudoprime numbers
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 633 Accepted Submission(s): 258
Problem Description
Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
【解题思路】这是一道不错的数论题目,可以学到很多东西,比如说将指数很大的数进
行二进制处理,还有就是判断素数和伪素数。最有用的知识点是:
1、如果p是奇数,则有(a.^p)mod(m)==((a%m)*(a.^(p-1)%m)%m成立;
2、如果p是偶数,则有a.^p==a.^(p/2)*a.^(p/2)。
也许可以说这两个结论人人都知道,但用起来就不是那么一回事了。