算法之路
文章平均质量分 68
该专栏是机器学习相关书籍学习笔记包括PRML,DL等,记录相关章节知识点,同时会加入实际项目中的理解和体会。我们先从PRML启程,它是通向算法届的必经之路,路漫漫其修远兮,吾将上下而求索,与诸君共勉!
悯生
正心、诚意、修身
展开
-
PRML Notes-Chapter1 Introduction(1.2 Probability Theory)
引言前个post我们回顾了机器学习相关的一些基本概念,并通过一个多项式拟合的例子感受机器学习的过程。我们知道,模式识别领域中一个重要的概念是事物的不确定性,今天所要讨论的就是一种对不确定性进行量化和计算的知识–概率论。基于概率论可以辅助我们做出最优的决策。接下来一起来下概率论相关的一些基本知识。目录 引言 目录 1 一个例子 2 基本知识 TBD1 .1 一个例子1.2 基本知识 概率论基本规则,加原创 2017-09-10 16:22:37 · 385 阅读 · 0 评论 -
PRML Notes- Chapter2 Probability Distribution
知识点 密度估计概念,区分参数估计,密度估计的问题,p52 参数分布概念,确定参数值的方法:最优化方法(似然函数)(频率学派); 给定观察数据引入参数先验分布(贝叶斯排) 共轭先验,后验和先验具有相同函数形式 什么是二项分布,它的共轭是beta分布,理解过程 什么是beta分布,如何引出的, Gamma函数,具体形式,具有的性质, 基于 后验~似然X先验,推出参数μ{\mu}的后验公式2.17,然后原创 2017-09-15 10:36:58 · 559 阅读 · 0 评论 -
SVM 相关公式推导解释
题记: 写这篇文章如下,首原创 2014-08-20 20:20:07 · 3235 阅读 · 0 评论 -
PRML Notes-Chapter1 Introduction(1.1,1.3,1.4)
PRML Notes-Chapter1 Introduction题记: RPML是ML领域的圣典,是从事算法这条路不可或缺的历练,它对内功的增强绝不是一点点,因此决定重新拿起圣典研读,并将自己的点滴思考做以记录,供后续温习和问题查找。由于笔者知识水平有限,文章中部分术语和概念可能不够严谨,望批评指正!目录PRML Notes-Chapter1 Introduction 目录 1 基本概念 2 概率原创 2017-09-02 17:22:16 · 660 阅读 · 0 评论