PRML Notes- Chapter2 Probability Distribution

知识点

  • 密度估计概念,区分参数估计,密度估计的问题,p52
  • 参数分布概念,确定参数值的方法:最优化方法(似然函数)(频率学派); 给定观察数据引入参数先验分布(贝叶斯排)
  • 共轭先验,后验和先验具有相同函数形式
  • 什么是二项分布,它的共轭是beta分布,理解过程
  • 什么是beta分布,如何引出的,
  • Gamma函数,具体形式,具有的性质,
  • 基于 后验~似然X先验,推出参数 μ 的后验公式2.17,然后得到结论
  • 后验和先验间参数的关系,公式2.18
  • 贝叶斯顺序学习 p55
  • 贝叶斯学习的共用属性 随着观测数据的怎多,后验不确定性下降,p56
  • 多项式分布 , 概念、形式
  • Dirichlet分布,概念、形式,二者共轭过程理解
  • 高斯分布,形式,p59
  • 马氏距离,p60
  • 高斯分布的局限性,p62,
  • 高斯分布单峰局限性,引入隐变量,p63,
  • 多元高斯,条件高斯,精度矩阵,p63
  • 公式2.81,2.82,线性高斯
  • 边缘高斯,形式
  • 高斯变量的贝叶斯过程成,理解过程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值