DIJKSTRA算法的Java实现

网上很多案例都是用的C++写的,但是我一般写Java多些,通过学习算法的基本理论,在Java上实现一遍。

public class DIJKSTRA {
    private static long[][] map = new long[1000][1000];
    private static long INF = (long) 1e9;
    private static long[] dis = new long[1000];
    private static int n,m;
    private static int x,y,r;
    private static int i_temp;
    private static int ini,obj;
    private static List<Integer> list = new ArrayList<>();

    public DIJKSTRA() {
    }
    //初始值的设定,包括节点数量,边数,起始出发点,终点
    public void init(){
        Scanner sc = new Scanner(System.in);
        System.out.println("请输入节点数、边数、起始点、终点(n、m、ini、obj):");
        n = sc.nextInt();m = sc.nextInt();ini = sc.nextInt();obj = sc.nextInt();
        //把路径集合的第一个点设为初始点
        list.add(ini);
        int m_temp = m;//为了后边输出,找了个临时变量来记录一下,不是重点!
        //把流量矩阵初始化!对角线为0,其他全是无穷大
        for (int i = 1; i <= n ; i++) {
            for (int j = 1; j <= n ; j++) {
                if(i == j){
                    map[i][j] = 0;
                }else {
                    map[i][j] = INF;
                }
            }
        }
        //路径要素初始化,r是两点之间的距离,并且导入到map流量矩阵中
        while (m > 0){
            System.out.println("请输入第"+ (m_temp + 1 - m) +"条边的信息(x,y,r):");
            x = sc.nextInt();y = sc.nextInt();r = sc.nextInt();
            map[x][y] = r;
            m--;
        }
        //初始化最短路径
        for (int i = 1; i <= n ; i++) {
            dis[i] = map[ini][i];
        }
    }

    public void Dijkstra(){
        int[] vis = new int[n + 1];
        vis[ini] = 1;
        int n_temp = n - 1;
        while (n_temp > 0) {
            long min = INF;
            n_temp--;
            //找出尚未确定最短路径的节点并且在下一次扫描路径最短的点
            for (int i = 1; i <= n; i++) {
                if(dis[i] < min && vis[i] == 0){
                    min = dis[i];
                }
            }
            //锁定节点目标
            for (int i = 1; i <= n; i++) {
                if(min == dis[i] && vis[i] == 0){
                    vis[i] = 1;
                    i_temp = i;
                    //如果obj还没走完,那么把这个节点加入当中
                    if(vis[obj] == 0 ){
                        list.add(i);
                    }
                    break;
                }
            }
            //基于新确定的节点,对其他还没有确定最短路径的节点,开始更新新的路径数据
            for (int i = 1; i <= n; i++) {
                if(vis[i] == 0 && map[i_temp][i] < INF / 2 && dis[i] > dis[i_temp] + map[i_temp][i]){
                    dis[i] = dis[i_temp] + map[i_temp][i];
                }
            }
        }
        //最后把obj作为目的节点的最后一站
        list.add(obj);
    }
    
    //输出得到的结果
    public void out(){
        for (int i = 1; i <= n; i++) {
            System.out.println("从"+ ini +"--"+ i +"的最短路径为:" + dis[i]);
        }
        System.out.println("从"+ini+"到达"+obj+"的最短路径需要依次经过:"+list);
    }

}

算法的原理如下:

(9条消息) Dijkstra算法图文详解_black-hole6的博客-CSDN博客_dijkstra算法

Dijkstra算法是一种用于寻找图中两点之间最短路径的贪心算法,通常用于解决单源最短路径问题。在Java实现Dijkstra算法,你可以按照以下步骤进行: 1. 初始化:创建一个优先队列(通常使用`PriorityQueue`或自定义最小堆),存储顶点和它们的距离(初始时距离为无穷大,源节点距离为0)。 2. 创建邻接表或邻接矩阵表示图。 3. 主循环: a. 从队列中取出当前最短距离的节点。 b. 更新与其相邻节点的距离,如果通过当前节点到达更短,更新距离,并标记该节点已访问。 c. 将未访问的邻居节点加入队列。 4. 当队列为空或找到目标节点时,算法结束。此时队列中的最后一个元素即为目标节点,且所有节点的距离值即是最短路径。 以下是简单的Java代码实现: ```java import java.util.*; public class Dijkstra { private final int V; // 图的顶点数 private List<List<Edge>> adj; // 邻接列表 private int[] dist; // 存储每个节点到源的距离 // 边类,包含起点、终点和权重 class Edge implements Comparable<Edge> { int src, dest, weight; public Edge(int src, int dest, int weight) { this.src = src; this.dest = dest; this.weight = weight; } @Override public int compareTo(Edge other) { return Integer.compare(this.weight, other.weight); } } public Dijkstra(int v, List<List<Edge>> adj) { this.V = v; this.adj = adj; dist = new int[V]; Arrays.fill(dist, Integer.MAX_VALUE); dist = 0; } // Dijkstra算法核心部分 public void dijkstra() { PriorityQueue<Edge> pq = new PriorityQueue<>(); pq.add(new Edge(0, 0, 0)); // 元素为 (距离, 节点, 来源) while (!pq.isEmpty()) { Edge curr = pq.poll(); int u = curr.dest; // 当前节点 if (dist[u] < curr.weight) continue; // 已经找到更短路径,跳过 for (Edge e : adj.get(u)) { int v = e.dest, alt = dist[u] + e.weight; if (alt < dist[v]) { dist[v] = alt; pq.removeIf(edge -> edge.src == v); // 如果找到更短路径,移除旧路径 pq.offer(new Edge(v, alt, u)); // 添加新路径 } } } } // 返回源节点到所有其他节点的最短距离 public int[] printDistances() { return dist; } // 示例用法 public static void main(String[] args) { List<List<Edge>> adj = new ArrayList<>(); // 图的邻接列表构建 // 填充邻接列表... Dijkstra dijkstraAlg = new Dijkstra(V, adj); dijkstraAlg.dijkstra(); int[] shortestDist = dijkstraAlg.printDistances(); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_仇笑痴_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值