GBDT和Adaboost的区别
Adaboost和GBDT都是基于加法模型和前向分步算法。Adaboost用于分类时可以看成基分类器是分类决策树桩,令损失函数为指数函数,通过每一次迭代调整样本权重分布使损失函数达到最小。这里指数函数和分类错误率一般分类器使用的分类函数可以认为是等价的。Adaboost用于回归时基学习器是回归决策树桩,令损失函数为残差。这里为什么不调整权重?GBDT是通过每一步拟合损失函数的梯度向量找到最优函数,最后将这些最优函数加起来既是全局最有函数。GBDT可使用任意形式的损失函数。
GBDT即梯度提升树,提升方法依然采用的是加法模型与前向分布算法。以决策树为基函数的提升方法称为提升树。对分类问题决策树是二叉分类树,对回归问题决策树是二叉决策树。例如前文中的例子中所使用的决策树桩即为一个根节点直接连接两个叶节点的简单决策树。
•与Adboost的区别
GBDT与Adboost最主要的区别在于两者如何识别模型的问题。Adaboost用错分数据点来识别问题,通过调整错分数据点的权重来改进模型。GBDT通过负梯度来识别问题,通过计算负梯度来改进模型。
◦GBDT每一轮训练时所关注的重点是本轮产生结果的残差,下一轮以本轮残差作为输入,尽量去拟合这个残差,使下一轮输出的残差不断变小。所以GBDT可以做到每一轮一定向损失函数减小的梯度方向变化,而传统的boosting算法只能是尽量向梯度方向减小,这是GBDT与传统boosting算法最大的区别,这也是为什么GBDT相比传统boosting算法可以用更少的树个数与深度达到更好的效果。
◦和AdaBoost一样,Gradient Boosting也是重复选择一个表现一般的模型并且每次基于先前模型的表现进行调整。不同的是,AdaBoost是通过提升错分数据点的权重来定位模型的不足,而GBDT是通过算梯度来定位模型的不足。因此相比AdaBoost,GBDT可以使用更多种类的目标函数。
◦抽象地说,模型的训练过程是对一任意可导目标函数的优化过程,通过反复地选择一个指向负梯度方向的函数,该算法可被看作在函数空间里对目标函数进行优化。
◦回归问题
1) 用回归树去拟合残差,其实就是用回归树去拟合目标方程关于f(x)的梯度。
2) 回归的目标函数并不一定会用square loss。square loss的优点是便于理解和实现,缺点在于对于异常值它的鲁棒性较差,一个异常值造成的损失由于二次幂而被过分放大,会影响到最后得到模型在测试集上的表现。可以算则Absolute loss或者Huber loss代替。
◦分类问题
1) 此时的目标函数常用log loss,如KL-散度或者交叉熵。
2) 除了损失函数的区别外,分类问题和回归问题的区别还在于当多分类问题时,每轮可能会训练多个分类器。
◦由于决策树是非线性的,并且随着深度的加深,非线性越来越强,所以基于决策树的GBDT也是非线性的。
以下转自https://blog.csdn.net/w28971023/article/details/43704775,感谢这位同学救我一命。
GBDT
一、要理解GBDT当然要从GB(Gradient Boosting)和DT(Decision Tree)两个角度来理解了;
二、GB其实是一种理念,他并不是这一个具体的算法,意思是说沿着梯度方向,构造一系列的弱分类器函数,并以一定权重组合起来,形成最终决策的强分类器;注意,这里的梯度下降法是在函数空间中通过梯度下降法寻找使得LOSS最小的一个函数,即L(y,f)对f求层,区别于传统的梯度下降法选择一个方向(对x求导);那么问题就来了,对函数求导?这也太难了吧。所以就有了一个近似的方法,根据经验风险最小化原则,我们认为在训练集上使得LOSS最小的函数,往往在测试集上表现会好,即在训练集上寻优;因此,把求导的函数理解成在训练集上该函数对应的离散的函数值,对函数求导就变成了对样本的函数值向量求导;因此就可以得到一个梯度向量,表示寻找到的最优函数, 这个函数就是一个新的弱分类器;
三、通过回归树来拟合这个梯度向量,就得到了DT,而每棵树就对应上面的函数,其预测值就是函数值;
四、当我们选择平方差损失函数时,函数向量就表示成前一棵回归树在样本空间上的预测值,则对函数向量求梯度就等于目标值减去预测值,即我们所说的残差向量;因此,下一棵回归树就是在拟合这个残差向量;
五、回归树拟合可以通过平均最小均方差来寻找分裂点,生成一个树;当然这棵树不可能完全拟合得好,因此,又会通过对损失函数求梯度,得到新的残差向量;
六、对初始分类器(函数)的选择就可以直接用0,通过平方差LOSS函数求得的残差当然就是样本本身了;也可以选择样本的均值;
七、一棵树的分裂过程只需要找到找到每个结点的分裂的特征id与特征值,而寻找的方法可以是平均最小均方差,也可以是使得(左子树样本目标值和的平方均值+右子树样本目标值和的平方均值-父结点所有样本目标值和的平方均值)最大的那个分裂点与分裂特征值等等方法;从而将样本分到左右子树中,继续上面过程;
八、用残差更新每个样本的目标值:叶子节点的均值作为落到该叶子节点的样本的预测值,使用目标值减去预测值,得到该样本的残差,作为下一棵树的训练目标;
GBDT类库boosting框架参数
首先,我们来看boosting框架相关的重要参数。由于GradientBoostingClassifier和GradientBoostingRegressor的参数绝大部分相同,我们下面会一起来讲,不同点会单独指出。
1) n_estimators: 也就是弱学习器的最大迭代次数,或者说最大的弱学习器的个数。一般来说n_estimators太小,容易欠拟合,n_estimators太大,又容易过拟合,一般选择一个适中的数值。默认是100。在实际调参的过程中,我们常常将n_estimators和下面介绍的参数learning_rate一起考虑。
2) learning_rate: 即每个弱学习器的权重缩减系数νν,也称作步长,在原理篇的正则化章节我们也讲到了,加上了正则化项,我们的强学习器的迭代公式为fk(x)=fk−1(x)+νhk(x)fk(x)=fk−1(x)+νhk(x)。νν的取值范围为0<ν≤10<ν≤1。对于同样的训练集拟合效果,较小的νν意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。所以这两个参数n_estimators和learning_rate要一起调参。一般来说,可以从一个小一点的νν开始调参,默认是1。
3) subsample: 即我们在原理篇的正则化章节讲到的子采样,取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间,默认是1.0,即不使用子采样。
4) init: 即我们的初始化的时候的弱学习器,拟合对应原理篇里面的f0(x)f0(x),如果不输入,则用训练集样本来做样本集的初始化分类回归预测。否则用init参数提供的学习器做初始化分类回归预测。一般用在我们对数据有先验知识,或者之前做过一些拟合的时候,如果没有的话就不用管这个参数了。
5) loss: 即我们GBDT算法中的损失函数。分类模型和回归模型的损失函数是不一样的。
对于分类模型,有对数似然损失函数"deviance"和指数损失函数"exponential"两者输入选择。默认是对数似然损失函数"deviance"。在原理篇中对这些分类损失函数有详细的介绍。一般来说,推荐使用默认的"deviance"。它对二元分离和多元分类各自都有比较好的优化。而指数损失函数等于把我们带到了Adaboost算法。
对于回归模型,有均方差"ls", 绝对损失"lad", Huber损失"huber"和分位数损失“quantile”。默认是均方差"ls"。一般来说,如果数据的噪音点不多,用默认的均方差"ls"比较好。如果是噪音点较多,则推荐用抗噪音的损失函数"huber"。而如果我们需要对训练集进行分段预测的时候,则采用“quantile”。
6) alpha:这个参数只有GradientBoostingRegressor有,当我们使用Huber损失"huber"和分位数损失“quantile”时,需要指定分位数的值。默认是0.9,如果噪音点较多,可以适当降低这个分位数的值。
GBDT类库弱学习器参数
这里我们再对GBDT的类库弱学习器的重要参数做一个总结。由于GBDT使用了CART回归决策树,因此它的参数基本来源于决策树类,也就是说,和DecisionTreeClassifier和DecisionTreeRegressor的参数基本类似。如果你已经很熟悉决策树算法的调参,那么这一节基本可以跳过。不熟悉的朋友可以继续看下去。
1) 划分时考虑的最大特征数max_features: 可以使用很多种类型的值,默认是"None",意味着划分时考虑所有的特征数;如果是"log2"意味着划分时最多考虑log2Nlog2N个特征;如果是"sqrt"或者"auto"意味着划分时最多考虑N−−√N个特征。如果是整数,代表考虑的特征绝对数。如果是浮点数,代表考虑特征百分比,即考虑(百分比xN)取整后的特征数。其中N为样本总特征数。一般来说,如果样本特征数不多,比如小于50,我们用默认的"None"就可以了,如果特征数非常多,我们可以灵活使用刚才描述的其他取值来控制划分时考虑的最大特征数,以控制决策树的生成时间。
2) 决策树最大深度max_depth: 默认可以不输入,如果不输入的话,决策树在建立子树的时候不会限制子树的深度。一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大深度,具体的取值取决于数据的分布。常用的可以取值10-100之间。
3) 内部节点再划分所需最小样本数min_samples_split: 这个值限制了子树继续划分的条件,如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分。 默认是2.如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。
4) 叶子节点最少样本数min_samples_leaf: 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝。 默认是1,可以输入最少的样本数的整数,或者最少样本数占样本总数的百分比。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。
5)叶子节点最小的样本权重和min_weight_fraction_leaf:这个值限制了叶子节点所有样本权重和的最小值,如果小于这个值,则会和兄弟节点一起被剪枝。 默认是0,就是不考虑权重问题。一般来说,如果我们有较多样本有缺失值,或者分类树样本的分布类别偏差很大,就会引入样本权重,这时我们就要注意这个值了。
6) 最大叶子节点数max_leaf_nodes: 通过限制最大叶子节点数,可以防止过拟合,默认是"None”,即不限制最大的叶子节点数。如果加了限制,算法会建立在最大叶子节点数内最优的决策树。如果特征不多,可以不考虑这个值,但是如果特征分成多的话,可以加以限制,具体的值可以通过交叉验证得到。
7) 节点划分最小不纯度min_impurity_split: 这个值限制了决策树的增长,如果某节点的不纯度(基于基尼系数,均方差)小于这个阈值,则该节点不再生成子节点。即为叶子节点 。一般不推荐改动默认值1e-7。
1.boosting的思想:利用弱分类器(基函数)不断调整样本的权重从而调整误差,迭代学习出M个弱分类器,在进行相应的组合。——属于迭代类算法
2.Adaboost算法是:不断调整样本的权重来达到降低模型分类误差,最后使用线性组合基函数的方式,基函数可以有多种形式。当基函数为阈值分类器的时候,属于分类问题的提升树。
3.对于提升树算法模型,是基函数为决策树的Adaboost特殊算法,因为决策树有回归决策树和分类决策树,所以存在回归提升树和分类提升树。回归提升树学习的代价函数是平方误差,而分类提升树学习的是指数函数。
问题1:为什么Adaboost以阈值分类器为基函数的加法模型(分类提升树)里面的基函数前面有系数而回归提升树的加法模型中的基函数前面没有系数???
回答1:可以把分类提升树对样本进行类别预测的过程看成多个弱分类器分别对某个样本进行分类预测,再根据每个分类器在训练集上表现进行权重分布,所以有了系数。而回归提升树使用前向分步算法优化(极小化)代价函数时,每一步迭代是不断拟合残差(样本真实值与提升树当前步骤的预测值的差距),来达到缩小预测值与真实数据间的分布,进行拆分的是样本数据,所以回归提升树前面没有系数。