scipy使用python寻找时间序列的极大值(局部最大值)或极小值(局部最小值),极值点

举例示意

讲道理不如举例子,下边结合代码快速说明如何求极值

>>> from scipy.signal import argrelextrema
>>> x = np.array([2, 1, 2, 3, 2, 
### 使用 Python 计算方程的最大值和最小值 对于数值数据,可以直接应用内置的 `max()` 和 `min()` 函数来查找列表元组中的最大值和最小值[^4]。然而,在处理更复杂的场景如连续函数时,则可能需要用到像 NumPy SciPy 这样的库。 当涉及到多维数组时,NumPy 提供了灵活的方法用于寻找整个数组、特定轴上的最大值最小值。例如,通过设置参数`axis=None`可以在整个数组范围内操作;而指定`axis=0`表示沿列方向,`axis=1`则代表按行求取极值[^2]。 为了定位由用户定义的一般形式下的数学表达式的局部极大/极小点,通常会采用优化算法。SciPy 的 optimize 子模块提供了多种工具可用于此目的。其中一种常见的方式是使用 scipy.optimize.minimize 来执行无约束最优化问题,它支持不同的求解器选项以适应不同类型的模型特性[^3]。 下面给出一段简单的代码片段展示如何利用这些技术: ```python import numpy as np from scipy import optimize def my_function(x): return (x - 2)**2 + 5*x*np.sin(3*(x-7)) # 定义区间范围 interval = (-10, 10) # 寻找全局最小值 result_min = optimize.minimize_scalar(my_function, bounds=interval, method='bounded') print(f'Global minimum found at x={result_min.x:.4f}, f(x)={result_min.fun:.4f}') # 对于一维情况也可以尝试brute force搜索近似最优解 grid_points = np.linspace(*interval, num=1e3) values_on_grid = list(map(my_function, grid_points)) approximate_max_index = np.argmax(values_on_grid) approximate_minimum_value = values_on_grid[int(approximate_max_index)] corresponding_x_for_approximate_maximum = grid_points[approximate_max_index] print(f'\nApproximated maximum value is {approximate_minimum_value:.4f} occurring around x ≈ {corresponding_x_for_approximate_maximum:.4f}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千行百行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值