Python 基于sympy模块求极值 导数 偏导

sympy简介:sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题。
1、求极限、求导、求偏导以及带值求导

在这里插入代码import sympy
#求极限
#设置符号变量Symbol只能创建一个变量 symbols 可一次定义多个变量
x1,x2,x3,x4=sympy.symbols('x1,x2,x3,x4')
#创建函数建立方程式
def F(t):
    return sympy.sin(t)/t
def N(t):
    return (x1**3+3*x1**2+1)/(4*x1**3+2*+3)
#调用limit求极限
limF=sympy.limit(F(x1),x1,0)
limN=sympy.limit(N(x1),x1,sympy.oo)
print("x1趋于0的极限为{}".format(limF))
print("x1趋于0的极限为{}".format(limN))
#求导
#创建求导函数
def S(t):
    return sympy.sec(t) #正割
def S1(x):
    return 2*x**4+2
#调用diff函数求导
s=sympy.diff(S(x1),x1).subs(x1,1) #subs 带值求导
print('S在1处的导数为{}'.format(s))
#求多阶导数 2阶
s1=sympy.diff(S1(x1),x1,2)
#带值计算
print("S1的二阶导数{}   带入值2计算为{}".format(s1,s1.subs(x1,2)))
#建立求偏导函数
def PD(x,y,z):
    return sympy.sin(x+pow(y,2)-sympy.exp(z))
#对x求偏导
x=sympy.diff(PD(x1,x2,x3),x1)
# print(x.subs(x1,2))
#对y求偏导
y=sympy.diff(PD(x1,x2,x3),x2)
#对z求偏导
z=sympy.diff(PD(x1,x2,x3),x3,2)
print("x的偏导为{}\ny的偏导为{}\nz的二次偏导为{}".format(x,y,z))

结果如下
在这里插入图片描述

2、求极值 并画出函数图像

import sympy
import math
import matplotlib.pyplot as plt
import numpy as np

#设置符号变量Symbol只能创建一个变量 symbols 可一次定义多个变量
x1,x2,x3,x4=sympy.symbols('x1,x2,x3,x4')


#用二阶导求极限
def erjie(x):
    return  x**3+x**2
x2=sympy.diff(erjie(x1),x1) #求一阶导
bb=sympy.solve(x2,x1)
x3=sympy.diff(erjie(x1),x1,2)  #求二阶导
ll = []
LL=[]
for i in bb:
    if x3.subs(x1,i)>0:
        LL.append(erjie(x1).subs(x1,i))  #二阶导大于零取极小值 小于零取极大值
    if x3.subs(x1,i)<0:
        ll.append(erjie(x1).subs(x1,i))   #可以直接erjie(i)
print("极小值",LL)
print("极大值",ll)
#绘制图像
fig,ax=plt.subplots(figsize=(8,6))
x=np.linspace(-1,1,10000)
ax.plot(x,erjie(x),lw=2)
ax.fill_between(x,erjie(x),color='green',alpha=0.5)
ax.set_xlabel("$x$",fontsize=18)
ax.set_ylabel("$erjie(x)$",fontsize=18)
ax.set_ylim(-0.5,1)
# plt.show()
plt.draw()
plt.pause(3)# 间隔的秒数:3s
plt.close(fig)

运行结果
在这里插入图片描述
在这里插入图片描述

Python中,您可以使用Sympy库来解曲线的单调区间和极值点。下面是一份示例代码: ```python import sympy as sp # 定义符号变量 x = sp.Symbol('x') # 定义一条曲线 y = x**3 - 2*x**2 + 3*x - 4 # 求导数 dy = sp.diff(y, x) # 导数为0的点 critical_points = sp.solve(dy, x) # 解二阶导数 d2y = sp.diff(dy, x) # 极值点 maxima_points = [] minima_points = [] for p in critical_points: if d2y.subs(x, p) > 0: maxima_points.append((p, y.subs(x, p))) elif d2y.subs(x, p) < 0: minima_points.append((p, y.subs(x, p))) # 解单调区间 increasing_intervals = [] decreasing_intervals = [] for i in range(len(critical_points) + 1): if i == 0: interval = sp.Interval(sp.NegativeInfinity, critical_points[i], True, True) elif i == len(critical_points): interval = sp.Interval(critical_points[i-1], sp.Infinity, True, True) else: interval = sp.Interval(critical_points[i-1], critical_points[i], True, True) if d2y.subs(x, interval.start) > 0: increasing_intervals.append(interval) elif d2y.subs(x, interval.start) < 0: decreasing_intervals.append(interval) print("Maxima points:", maxima_points) print("Minima points:", minima_points) print("Increasing intervals:", increasing_intervals) print("Decreasing intervals:", decreasing_intervals) ``` 在这个示例代码中,我们首先定义了一条曲线 `y = x**3 - 2*x**2 + 3*x - 4`,然后使用Sympy库来求导数、导数为0的点、二阶导数以及极值点。接下来,我们根据二阶导数的符号来判断单调区间,将单调递增区间和单调递减区间分别存储到 `increasing_intervals` 和 `decreasing_intervals` 变量中。最后,我们将得的极值点和单调区间打印出来。 需要注意的是,这个示例代码中的 `increasing_intervals` 和 `decreasing_intervals` 变量存储的是Sympy库中的区间对象,如果需要将它们转换为数值区间,可以使用 `as_real_interval` 函数来实现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值