最长上升子序列(LIS) nlogn解法


最长上升子序列LIS:Longest increasing subsequence

题目链接:Leetcode300. 最长递增子序列

经典DP解法O(n^2)

数据范围:1000.
时间复杂度O(n 2 ^2 2)
空间复杂度O(n)
分析
转移方程

j= 0,…,i-1
if(nums[j]<nums[i])
dp[i]=max(dp[i],dp[j]+1);

ac代码

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n=nums.size();
        vector<int> dp(n,1);//赋值为1
        int ans=0;
        for(int i=0;i<n;i++)
            {
                for(int j=0;j<i;j++)
                    if(nums[j]<nums[i])
                        dp[i]=max(dp[i],dp[j]+1);
                ans=max(dp[i],ans);
            }
        return ans;
    }
};

下面是进行优化

dp+二分法(O(nlogn))

题目Acwing896. 最长上升子序列 II

数据范围 1 0 5 10^5 105,需要nlogn的算法。

给定一个长度为N的数列,求数值严格单调递增的子序列的长度最长是多少。

输入格式
第一行包含整数N。

第二行包含N个整数,表示完整序列。

输出格式
输出一个整数,表示最大长度。

数据范围
1≤N≤100000,

−109≤数列中的数≤109
输入样例:
7
3 1 2 1 8 5 6
输出样例:
4
时间复杂度O(nlogn)
空间复杂度O(n)
分析
维护一个数组vec,vec[i]表示 长度为 i+1的LIS的 最小的终点

长度相同的LIS只存终点的最小值。

随着LIS长度的增加,其结尾的值(最小的那个)一定是单调递增的,比如:长度为4的LIS的终点值< 长度为5的LIS的终点值。

该策略是让小元素尽可能更新在前面,替换掉前面的大元素,这是因为 前面的数越小,LIS的长度才可能越长。
举例(1,5,2,3,4,6)
更新vec如下
第一个1来,vec[0]=1 此时 vec={1}
第二个5来,因为5> 1,vec 拓展,vec[1]=5,此时 vec[ ] ={1,5}
第三个2 来,而2<5, 替换之,vec[1]=2;此时 vec[ ]={1,2}
第四个3来,因为3>2,vec拓展,vec[2]=3;此时 vec[ ]={1,2,3}
第五个4来,因为4>3,vec拓展,vec[3]=4;此时 vec[ ]={1,2,3,4}
第六个6来,因为6>4,vec拓展,vec[4]=6;此时 vec[ ] ={1,2,3,4,6}
最后返回vec数组的长度 LIS=5

lower_bound 函数,查找nums[i] ,返回大于等于nums[i]的第一个位置
lower_bound()函数返回的是一个迭代器(可以简单地理解成地址),我们需要减去初始迭代器vec.begin()(初始地址),得到的才是下标。
即公式:地址-地址=下标

int p=lower_bound(vec.begin(),vec.end(),nums[i])-vec.begin();//二分查找,

比如vec[ ]= {1,5} 现在新来元素为2,上述lower_bound代码返回下标p=1,这里就是≥2的第一个位置,即5所在的位置,这时候我们怎么处理呢?没错,就是替换掉5,使用语句vec[p]= 2, 我们维护的伪LIS数组就变成了vec[ ]= {1,2} ,LIS长度没变,只是在保证单调性条件下,使该长度的上升子序列结尾的元素尽可能的小。

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n=nums.size();
        vector<int> vec;

        for(int i=0;i<n;i++)
        {
            int p=lower_bound(vec.begin(),vec.end(),nums[i])-vec.begin();//二分查找,返回大于等于nums[i]的第一个位置
            if(p==vec.size())//添加进来
                vec.push_back(nums[i]);
            else
                vec[p]=nums[i];//替换掉
        }
        return vec.size();//返回所维护数组的大小
    }
};

如果是最长不降子序列
采用upper_bound()函数,返回第一个大于x的位置这样的话,遇到相等的元素,则一直会添加到数组中来
比如 (000011111)这样的二进制序列
对应下面的题目

题目如下
Leetcode 926 将字符串翻转到单调递增
如果一个由 ‘0’ 和 ‘1’ 组成的字符串,是以一些 ‘0’(可能没有 ‘0’)后面跟着一些 ‘1’(也可能没有 ‘1’)的形式组成的,那么该字符串是单调递增的。

我们给出一个由字符 ‘0’ 和 ‘1’ 组成的字符串 S,我们可以将任何 ‘0’ 翻转为 ‘1’ 或者将 ‘1’ 翻转为 ‘0’。

返回使 S 单调递增的最小翻转次数。

示例 1:
输入:“00110”
输出:1
解释:我们翻转最后一位得到 00111.
示例 2:
输入:“010110”
输出:2
解释:我们翻转得到 011111,或者是 000111。
示例 3:
输入:“00011000”
输出:2
解释:我们翻转得到 00000000。

提示:
1 <= S.length <= 20000
S 中只包含字符 ‘0’ 和 ‘1’

时间复杂度O(nlogn)
空间复杂度O(n)
当然这题最快的是O(n)的算法

ac代码

class Solution {
public:
    int minFlipsMonoIncr(string S) {
        int len=S.size();
        vector<char> vec;
        for(int i=0;i<len;i++)
        {
            int p = upper_bound(vec.begin(),vec.end(),S[i])-vec.begin();
            if(vec.size()==p) 
                vec.push_back(S[i]);
            else
                vec[p]=S[i];
        }
       return len-vec.size();
    }
     
};

后面再补充另一种思维

题目Acwing896. 最长上升子序列 II该题目下的ac代码1


/*

  长度相同的LIS只存终点的最小值。
  
  随着LIS长度的增加,其结尾的值一定是单调递增的
    比如:长度为4的LIS的终点值< 长度为5的LIS的终点值



*/


/*

    二分出来小于某个数的最大的数
*/

#include<bits/stdc++.h>
using namespace std;


const int N=100010;

int a[N]; //原序列
int q[N]; //存不同长度的上升子序列结尾的最小值。
int n;
int main(){
    cin>>n;
    for(int i=0;i<n;i++) cin>>a[i];
    int len=0;//存的上升子序列的最大长度
     q[0]=-2e9;//哨兵
    

    //二分:[0,len]中小于某个数的最大的数
    for(int i=0;i<n;i++){
        int l=0,r = len;
        
        while(l<r){
            int mid = l+r+1 >>1;
            if(q[mid]<a[i]) l = mid ;
            else r = mid -1;
        }
        len =max(len , r+1);
        q[r+1]=a[i];  //后面添上一个
        
    }    
    
    cout<<len<<endl;
    
    
    
}

acwing这道题ac代码2

#include<bits/stdc++.h>
using namespace std;

const int N=100010;
int a[N];

int LIS(int a[],int n){
    
    vector<int> vec;
    for(int i=0;i<n;i++){
     int p= lower_bound(vec.begin(),vec.end(),a[i])-vec.begin(); //找到第一个大于等于a[i]的位置
        if(p==vec.size()) vec.push_back(a[i]); //如果长度相等,并且新来的元素大于末尾,就替换掉
        else vec[p]=a[i]; 
    }
    
    return vec.size();
    
}



int main(){
    int n;
    cin>>n;
    for(int i=0;i<n;i++) cin>>a[i];
    
    cout<<LIS(a,n)<<endl;
    
    
}
### 关于最长公共子序列问题的时间复杂度为O(nlogn)的算法模板 对于给定两个长度分别为m和n的字符串X和Y,计算其最长公共子序列(LCS),通常的方法是采用时间复杂度为\(O(m \times n)\)的动态规划方法。然而,在特定情况下可以实现更高效的解决方案。 当处理的是排列而非一般字符串时,即输入数据由不重复整数构成并代表某种顺序,则存在一种基于二分查找技术来达到\(O((m+n)\log m)\)[^1]效率级别的改进型解法。此方法首先映射其中一个序列为连续区间内的数值以便后续操作;接着利用另一个序列中的元素在此已调整过的序列上执行类似于最长增加子序列(Longest Increasing Subsequence, LIS)的操作流程完成匹配过程[^2]。 具体来说: - 将第一个排列 \(P_1\) 映射到位置索引; - 对第二个排列 \(P_2\) 中每一个值查询它在 \(P_1\) 中的位置,并记录这些位置形成的新列表; - 使用上述新列表作为基础去解决一个等价版本的最大增长子串问题——这一步骤能够通过树状数组或线段树等方式加速至 \(O(N\log N)\) 时间内完成[^3]。 以下是Python代码示例展示如何应用这一思路解决问题: ```python from bisect import bisect_left def map_positions(p): pos = {value: index for index, value in enumerate(p)} return [pos[value]+1 for value in p] def lis(nums): dp = [] for num in nums: i = bisect_left(dp, num) if i == len(dp): dp.append(num) else: dp[i] = num return len(dp) def lcs_via_lis(p1, p2): mapped_p2 = map_positions(dict(enumerate(p1))) positions_in_p1 = [mapped_p2[p] for p in p2 if p in mapped_p2] return lis(positions_in_p1) p1 = [3, 2, 1, 4, 5] p2 = [1, 2, 3, 4, 5] print(lcs_via_lis(p1, p2)) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值