阿克曼函数求解(递归和非递归)

B阿克曼函数
阿克曼(Arkmann)函数 A(m,n) 中,m与n的定义域是非负整数且本题中m<=3,n<=16。

函数的定义为:
在这里插入图片描述

在这里插入图片描述

以上结果是使用下面的递归函数跑出来的结果,超时(time limit exceed=TLE)。
超时代码

#include<iostream>
using namespace std;

int akm(int m,int n){
	if(m==0) return n+1;
	if(m>0&&n==0) return akm(m-1,1);
	if(m>0&&n>0) return akm(m-1,akm(m,n-1));
 }
int main(){
	int m,n;
	cin>>m>>n;
	cout<<akm(m,n)<<endl; 
	
}

解析
看见别人用以上代码打表,然后推出来公式。
规律如下
a k m ( 0 , n ) = n + 1 akm(0,n)=n+1 akm(0,n)=n+1
a k m ( 1 , n ) = n + 2 akm(1,n)=n+2 akm(1,n)=n+2
a k m ( 2 , n ) = 2 n + 3 akm(2,n)=2n+3 akm(2,n)=2n+3
a k m ( 3 , n ) = 2 n + 3 − 3 akm(3,n)=2^{n+3}-3 akm(3,n)=2n+33

ac代码
函数pow在头文件cmath

#include<iostream>
#include<cmath>//pow函数
using namespace std;

int main(){
	int m,n;
	
		cin>>m>>n;
		if(m==0) cout<<n+1<<endl;
		if(m==1) cout<<n+2<<endl;
		if(m==2) cout<<2*n+3<<endl;
		if(m==3) cout<<pow(2,n+3)-3<<endl;	
}

非递归解法待补充

参考关于阿克曼函数(akermann)非递归算法的一点见解 c++

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值