Explicit Score Matching:显式分数匹配的原理与应用

Explicit Score Matching:显式分数匹配的原理与应用

在生成模型的研究中,分数匹配(Score Matching)是一种重要的方法,用于从数据样本中学习概率分布的特性。Explicit Score Matching(显式分数匹配)是其中的一种经典形式,它通过核密度估计(Kernel Density Estimation, KDE)来近似真实分布的分数函数,并基于此定义损失函数来训练网络。本篇博客将面向具有大模型理论基础的研究者,详细介绍 Explicit Score Matching 的原理、推导及其在生成过程中的应用,同时探讨其优缺点。

什么是分数匹配?

在概率建模中,分数函数(Score Function)定义为概率密度函数的对数梯度,即 ( ∇ x log ⁡ p ( x ) \nabla_x \log p(x) xlogp(x) )。它描述了密度在每个点上的变化方向和幅度,是生成模型(如扩散模型)中常用的工具。分数匹配的目标是训练一个参数化模型 ( s θ ( x ) s_\theta(x) sθ(x) )(通常是一个神经网络),使其尽可能接近真实分布 ( p ( x ) p(x) p(x) ) 的分数函数:
s θ ( x ) ≈ ∇ x log ⁡ p ( x ) s_\theta(x) \approx \nabla_x \log p(x) sθ(x)xlogp(x)
然而,问题在于真实分布 ( p ( x ) p(x) p(x) ) 通常是未知的,我们只有有限的样本 ( X = { x ( 1 ) , x ( 2 ) , … , x ( M ) } X = \{x^{(1)}, x^{(2)}, \dots, x^{(M)}\} X={x(1),x(2),,x(M)} )。Explicit Score Matching 通过核密度估计解决了这一难题。

Explicit Score Matching 的核心思想
核密度估计 ( q h ( x ) q_h(x) qh(x) )

由于 ( p ( x ) p(x) p(x) ) 不可知,Explicit Score Matching 使用核密度估计 ( q h ( x ) q_h(x) qh(x) ) 来近似它:
q h ( x ) = 1 M ∑ m = 1 M 1 h K ( x − x ( m ) h ) q_h(x) = \frac{1}{M} \sum_{m=1}^M \frac{1}{h} K\left( \frac{x - x^{(m)}}{h} \right) qh(x)=M1m=1Mh1K(hxx(m))
其中 ( K ( ⋅ ) K(\cdot) K() ) 是核函数(如高斯核),( h h h ) 是带宽超参数。这种方法通过在每个样本点周围放置一个平滑核,并取平均值,构造了一个连续的密度估计(详情可参考笔者的博客:经典核密度估计(Kernel Density Estimation):从直觉到数学)。

损失函数的定义

Explicit Score Matching 的损失函数基于分数匹配的直觉,即让 ( s θ ( x ) s_\theta(x) sθ(x) ) 接近 ( ∇ x log ⁡ p ( x ) \nabla_x \log p(x) xlogp(x) )。由于 ( p ( x ) p(x) p(x) ) 未知,我们用 ( q h ( x ) q_h(x) qh(x) ) 替代,定义损失为:
J ESM ( θ ) = 1 2 E p ( x ) ∥ s θ ( x ) − ∇ x log ⁡ p ( x ) ∥ 2 2 ≈ 1 2 E q h ( x ) ∥ s θ ( x ) − ∇ x log ⁡ q h ( x ) ∥ 2 2 J_{\text{ESM}}(\theta) = \frac{1}{2} \mathbb{E}_{p(x)} \| s_\theta(x) - \nabla_x \log p(x) \|_2^2 \approx \frac{1}{2} \mathbb{E}_{q_h(x)} \| s_\theta(x) - \nabla_x \log q_h(x) \|_2^2 JESM(θ)=21Ep(x)sθ(x)xlogp(x)2221Eqh(x)sθ(x)xlogqh(x)22
将其展开为积分形式:
J ESM ( θ ) = ∫ ∥ s θ ( x ) − ∇ x log ⁡ q h ( x ) ∥ 2 2 q h ( x )   d x J_{\text{ESM}}(\theta) = \int \| s_\theta(x) - \nabla_x \log q_h(x) \|_2^2 q_h(x) \, dx JESM(θ)=sθ(x)xlogqh(x)22qh(x)dx
代入 ( q h ( x ) q_h(x) qh(x) ) 的表达式,损失变为:
J ESM ( θ ) ≈ 1 M ∑ m = 1 M ∫ ∥ s θ ( x ) − ∇ x log ⁡ q h ( x ) ∥ 2 2 1 h K ( x − x ( m ) h )   d x J_{\text{ESM}}(\theta) \approx \frac{1}{M} \sum_{m=1}^M \int \| s_\theta(x) - \nabla_x \log q_h(x) \|_2^2 \frac{1}{h} K\left( \frac{x - x^{(m)}}{h} \right) \, dx JESM(θ)M1m=1Msθ(x)xlogqh(x)22h1K(hxx(m))dx
这个损失函数可以通过蒙特卡洛近似计算,用于训练网络 ( s θ ( x ) s_\theta(x) sθ(x) )。

计算 ( ∇ x log ⁡ q h ( x ) \nabla_x \log q_h(x) xlogqh(x) )

为了实现损失函数,我们需要计算 ( q h ( x ) q_h(x) qh(x) ) 的分数函数。令:
q h ( x ) = 1 M ∑ m = 1 M k m ( x ) , k m ( x ) = 1 h K ( x − x ( m ) h ) q_h(x) = \frac{1}{M} \sum_{m=1}^M k_m(x), \quad k_m(x) = \frac{1}{h} K\left( \frac{x - x^{(m)}}{h} \right) qh(x)=M1m=1Mkm(x),km(x)=h1K(hxx(m))
则:
log ⁡ q h ( x ) = log ⁡ ( 1 M ∑ m = 1 M k m ( x ) ) \log q_h(x) = \log \left( \frac{1}{M} \sum_{m=1}^M k_m(x) \right) logqh(x)=log(M1m=1Mkm(x))
对 ( x x x ) 求梯度:
∇ x log ⁡ q h ( x ) = ∇ x q h ( x ) q h ( x ) = ∑ m = 1 M ∇ x k m ( x ) ∑ m = 1 M k m ( x ) \nabla_x \log q_h(x) = \frac{\nabla_x q_h(x)}{q_h(x)} = \frac{\sum_{m=1}^M \nabla_x k_m(x)}{\sum_{m=1}^M k_m(x)} xlogqh(x)=qh(x)xqh(x)=m=1Mkm(x)m=1Mxkm(x)
对于核函数 ( K ( u ) K(u) K(u) ),令 ( u = x − x ( m ) h u = \frac{x - x^{(m)}}{h} u=hxx(m) ),则:
∇ x k m ( x ) = ∇ x [ 1 h K ( x − x ( m ) h ) ] = 1 h 2 K ′ ( x − x ( m ) h ) \nabla_x k_m(x) = \nabla_x \left[ \frac{1}{h} K\left( \frac{x - x^{(m)}}{h} \right) \right] = \frac{1}{h^2} K'\left( \frac{x - x^{(m)}}{h} \right) xkm(x)=x[h1K(hxx(m))]=h21K(hxx(m))
因此,分数函数是一个加权和,具体形式依赖于 ( K ( ⋅ ) K(\cdot) K() ) 的导数。

应用:Langevin 动力学

训练好 ( s θ ( x ) s_\theta(x) sθ(x) ) 后,可以将其用于生成样本。Explicit Score Matching 常与 Langevin 动力学结合,迭代公式为:
x t + 1 = x t + τ s θ ( x t ) + 2 τ z , z ∼ N ( 0 , I ) \mathbf{x}_{t+1} = \mathbf{x}_t + \tau s_\theta(\mathbf{x}_t) + \sqrt{2\tau} \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(0, \mathbf{I}) xt+1=xt+τsθ(xt)+2τ z,zN(0,I)
其中 ( τ \tau τ) 是步长。这类似于扩散模型中的采样过程,但依赖于显式估计的分数函数。

Explicit Score Matching 的优缺点
  • 优点
    • 直观性:直接基于核密度估计,避免了对 ( p ( x ) p(x) p(x) ) 的参数化假设。
    • 理论基础:与经典统计方法(如 KDE)紧密相关,易于理解。
  • 缺点
    • 核密度估计的局限:当样本量 ( M M M ) 有限或数据维度较高时,( q h ( x ) q_h(x) qh(x) ) 对 ( p ( x ) p(x) p(x) ) 的近似效果较差,导致 ( ∇ x log ⁡ q h ( x ) \nabla_x \log q_h(x) xlogqh(x) ) 不准确。
    • 计算复杂度:计算 ( ∇ x log ⁡ q h ( x ) \nabla_x \log q_h(x) xlogqh(x) ) 需要对所有样本求和,效率低下。
与大模型的联系

作为大模型研究者,你可能注意到 Explicit Score Matching 与扩散模型(DDPM、DDIM)有相似之处。扩散模型也依赖分数函数,但通过神经网络直接学习 ( ϵ ^ θ ( x t ) \widehat{\boldsymbol{\epsilon}}_\theta(x_t) ϵ θ(xt) )(与分数相关),而不是显式估计 ( q h ( x ) q_h(x) qh(x) )。Explicit Score Matching 的核密度估计方法在现代深度学习中较少直接使用,但其思想启发了 Implicit Score Matching 等改进方法,后者通过避免显式计算 ( ∇ x log ⁡ q h ( x ) \nabla_x \log q_h(x) xlogqh(x) ) 提高了效率。

总结

Explicit Score Matching 是一种基于核密度估计的经典分数匹配方法,通过定义一个可计算的损失函数来训练分数模型。尽管它在高维数据和有限样本下的表现受限,但其理论清晰且直观,是理解生成模型(如 Score-Based Generative Modeling)的重要起点。对于熟悉大模型的你来说,它可以看作是从传统统计到深度学习的桥梁,值得一看!

后记

2025年3月7日20点19分于上海,在Grok 3大模型辅助下完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值