《数理统计学简史》读书笔记2——二项分布以及其在大数定律上的证明

一.狄莫弗二项分布的研究

1721年,亚历山大.咯明狄莫弗提出了一个计算赌博期望的问题,期望为:
D N = E ( ∣ X − N p ∣ ) = ∑ i = 1 N ∣ ∣ i − N p ∣ b ( N , p , i ) D_{N}=E(|X-Np|)=\sum_{i=1}^{N}||i-Np|b(N,p,i) DN=E(XNp)=i=1NiNpb(N,p,i)
狄莫弗在N为整数时得出:
D N = 2 N p q b ( N , p , N p ) D_{N}=2Npqb(N,p,Np) DN=2Npqb(N,p,Np)
狄莫弗对上述公式进行了一些讨论,记
K N = E ( ∣ X N − p ∣ ) = D N N = 2 p q b ( N , p , N p ) K_{N}=E(|\frac{X}{N}-p|)=\frac{D_{N}}{N}=2pqb(N,p,Np) KN=E(NXp)=NDN=2pqb(N,p,Np)
容易证明:
lim ⁡ n → ∞ b ( N , p , N p ) = 0 \lim\limits_{n \to \infty}b(N,p,Np)=0 nlimb(N,p,Np)=0
后来狄莫弗证明了当 N → ∞ N \to \infty N时, b ( N , p , N p ) b(N,p,Np) b(N,p,Np) 1 N \frac{1}{\sqrt{N}} N 1趋于0。

狄莫弗深入研究二项式的计算,记 b ( i ) = b ( 2 m , 1 2 , i ) b(i)=b(2m,\frac{1}{2},i) b(i)=b(2m,21,i),有:
b ( m ) ∼ 2.618 ( 1 − 1 N ) N N − 1 b(m) \sim2.618\frac{(1-\frac{1}{N})^{N}}{\sqrt{N-1}} b(m)2.618N1 (1N1)N
注意这里的 ∼ \sim 表示趋近 N → ∞ N \to \infty N时比为1的意思。这是一个重要的工具,在二项式的研究和正态分布的研究过程中。
同时还研究了 N → ∞ N \to \infty N b ( m ) b ( m + d ) \frac{b(m)}{b(m+d)} b(m+d)b(m)的关系,这样便可求出 b ( m + d ) b(m+d) b(m+d)的趋近形式。

斯特林得知狄莫弗的结果后作出了2个关于b(m)级数的表示,首次将 π \pi π引入到这类公式。同时当 m = m 2 , N → ∞ m=\frac{m}{2}, N \to \infty m=2m,N,得出:
b ( m ) ∼ 2 π N               ( 1 ) b(m) \sim \sqrt{\frac{2}{\pi N}} ~~~~~~~~~~~~~(1) b(m)πN2              (1)
其实利用瓦里斯无穷乘积结果和b(m)的乘积形式便可得出。
(附上注明的斯特林公式简洁形式: m ! ∼ 2 π m m + 1 2 e − m m! \sim\sqrt{2\pi}m^{m+\frac{1}{2}}e^{-m} m!2π mm+21em)。

又过去了几年,狄莫弗放弃了精确的要求,得出:
b ( m + d ) b ( m ) ∼ e x p ( − 2 d 2 N ) . \frac{b(m+d)}{b(m)} \sim exp(-\frac{2d^{2}}{N}). b(m)b(m+d)exp(N2d2).

注意d可以随着N变换但 d N \frac{d}{\sqrt{N}} N d保持有界

结合(1)式,便得出
b ( m + d ) ∼ 2 2 π N e − 2 d 2 N b(m+d) \sim\frac{2}{\sqrt{2\pi N}}e^{-\frac{2d^{2}}{N}} b(m+d)2πN 2eN2d2

狄莫弗工作的一个重要意义:
观察值的算术平均的精度,与观察次数N的平方跟成正比

二.对大数定律问题的作用:

原问题:
∣ x N − p ∣ ≤ ε |\frac{x}{N}-p| \leq \varepsilon Nxpε的概率不小于 c ( c + 1 ) \frac{c}{(c+1)} (c+1)c, N N N最少为多少?
将问题作个转换: P d = P ( ∣ X − N p ∣ ) ≤ d ) P_{d}=P(|X-Np|)\leq d) Pd=P(XNp)d),固定 N N N,去计算 P d P_{d} Pd

对此狄莫弗提出了中心极限定理 (里程碑):
P d = ∑ i : ∣ m − i ∣ ≤ d b ( i ) ∼ 2 2 π N ∑ i : ∣ m − i ∣ ≤ d e − 2 ( d N ) 2 ∼ 2 2 π ∫ − d N d N e − 2 x 2   d x ∼ 1 2 π ∫ − 2 d N 2 d N e − x 2 2   d x P_{d}=\sum_{i:|m-i|\leq d}b(i)\sim \frac{2}{ \sqrt{2\pi N}} \sum_{i:|m-i|\leq d}e^{-2\big(\frac{d}{\sqrt{N}}\big)^{2}}\sim \frac{2}{\sqrt{2\pi}}\int_{-\frac{d}{\sqrt{N}}}^{\frac{d}{\sqrt{N}}} e^{-2x^2}\, dx\sim\frac{1}{\sqrt{2\pi}}\int_{-\frac{2d}{\sqrt{N}}}^{\frac{2d}{\sqrt{N}}} e^{-\frac{x^2}{2}}\, dx Pd=i:midb(i)2πN 2i:mide2(N d)22π 2N dN de2x2dx2π 1N 2dN 2de2x2dx

d = c N d=c\sqrt{N} d=cN ,取C充分大,对于足够大的 N N N,事件 ∣ X N − 1 2 ∣ ≤ C N |\frac{X}{N}-\frac{1}{2}|\leq \frac{C}{\sqrt{N}} NX21N C的概率可任意趋近于1。由于 lim ⁡ N → ∞ C N = 0 \lim_{N \to \infty}\frac{C}{\sqrt{N}}=0 limNN C=0,所以对于任意
ε > 0 \varepsilon>0 ε>0,有 lim ⁡ N → ∞ ∣ X N − 1 2 ∣ ≤ ε = 1 \lim_{N \to \infty}|\frac{X}{N}-\frac{1}{2}|\leq\varepsilon=1 limNNX21ε=1,即伯努利大数定率。

三.其他关于二项分布的工作:

(1) p p p不为 1 / 2 1/2 1/2的情况。
(2)波哇松公式
lim ⁡ N → ∞ b ( N , p , k ) = e − λ λ k k ! , λ = lim ⁡ N → ∞ N p \lim_{N \to \infty}b(N,p,k)=e^{-\lambda} \frac{\lambda^{k}}{k!},\lambda=\lim_{N \to \infty} Np limNb(N,p,k)=eλk!λk,λ=limNNp

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值