概率论考点之大数定理与中心极限定理

本文深入探讨了概率论中的核心概念,包括切比雪夫不等式、大数定理及中心极限定理。详细解释了这些定理的应用场景与意义,并通过实例展示了如何运用这些原理解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如题:2019年10月

分析:没看这部分的内容。

答案:23、考切比雪夫不等式,详见问题2。指数分布数学期望是\frac{1}{\lambda }=1/0.5=2  方差是\frac{1}{\lambda ^{2}}=4,题目给出的是绝对值大于某个数,所以P概率要小于是D(x)/\xi ^{2}=4/16=\frac{1}{4}

           22、考的中心极限定理,详见问题4。二项分布 E(x)=np=100*0.5=50 ,\sigma=\sqrt{D(x))} =\sqrt{np*(1-P)}=5,没有告诉是一堆随机变量相当,只告诉n>50(也就是n很大),所以符合定理2。\frac{50-50}{5}<\frac{Yn-50}{5}<\frac{60-50}{5}\approx\Phi(2)-\Phi(0)=0.9772-0.5=0.4772.    \Phi(0)=0.5??这个可以从标准正态分布的图形上来看,因为是关于x=0对称的,所以面积占了总面积的一半。

1、两大定量的意义是什么??

概率论本身是建立在大量数据观察的基础上的,抽象一下就是极限,而这两个是关于极限的定理。大数定理指随机变量的算术平均值具有稳定性,这与前面概率的本质是频率的稳定值是一个意思。而中心极限定理指随机变量极限分布符合正态分布。

2、什么是切比雪夫不等式??相比之下,里面的图更容易理解些。

有什么用呢,用来估计某个随机变量的取值是落在某个区间上的概率。也就是利用数学期望和方差来估计X概率范围,不需要知道x的分布。等价形式比较重要因为概率极大值情形下也就是\xi取很大,\frac{D(x))}{\xi ^{2}}取决于方差了,当方差越小,1-\frac{D(x))}{\xi ^{2}}就越大,落在区间概率就越大。但肯定服从正态分布的,所以切比雪夫不等式也揭示了,概率肯定是落在某个区间内的。

3、大数定理,基本不考。

4、中心极限定理??很重要。就两个内容。

  • 当随机变量充大的时候,近似服从正态分布
  • 一堆随机变量作和,当个数充分多时,也服从正态分布

具体的定理如下:

一堆随机变量做和时,n足够大服从正态分布

n充分大,近似看成正态分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guangod

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值