《数理统计学简史》读书笔记3——正态分布的由来(误差理论)

关于误差的分布

伽利略在1632年出版的著作《关于两个主要世界系统的对话——拖雷密和哥白尼》中提及这个问题。他用“观测误差”这个名称。即我们现在理解的随机误差。他提出以下几点:
1.所以观测值都有误差,其来源可归因于观测者、仪器工具以及观测条件。
2.观测误差对称地分布在0的两侧——按:这当然假定以排除系统误差的情况。
3.小误差出现得比大误差更频繁。

后来辛普森证明在概率意义下平均误差小于个别误差。即
P ( ∣ e ˉ ∣ ≤ k ) ≥ P ( ∣ e 1 ∣ ≤ k ) , k > = 0. P(|\bar{e}|\leq k)\geq P(|e_{1}|\leq k), k>=0. P(eˉk)P(e1k),k>=0.
辛普森只用一种特殊的误差证明了上述结果。

拉普拉斯早期工作

拉普拉斯假定的误差密度与哥白尼思想一样:
f ( x ) = f ( − x ) f(x)=f(-x) f(x)=f(x);
f(x)在 x ≥ 0 x\geq 0 x0处增加时,f(x)下降;
同时他作出如下推理:
由于x趋近无穷时,f(x)趋近于0,随着x的增加曲线f(x)愈来愈平缓。另一方面f(x)本身也在下降,拉普拉斯假定 − f ( x ) ′ = m f ( x ) , x ≥ 0 -f(x)^{'}=mf(x),x\geq 0 f(x)=mf(x),x0
上述方程解得 f ( x ) = c e − m x , c ≥ 0 f(x)=ce^{-mx},c\geq 0 f(x)=cemx,c0。又由于概率和密度为1,所以 f ( x ) = m 2 e − m ∣ x ∣ , − ∞ < x < ∞ f(x)=\frac{m}{2}e^{-m|x|},-\infty <x<\infty f(x)=2memx<x< (1)。
拉普拉斯从均概原则和绝对平均误差最小的原则(事实上属于同一原则)出发得出了n=3的情况。

高斯推导出误差正态分布

1809年,高斯在其《绕日本天体运动的理论》的末尾,他写了一节有关数据结合的问题,实际就是误差分布的确定问题。高斯的两项创新的想法帮助了问题的解决。

设真值为 θ \theta θ,n个独立测量值为 X 1 , . . . , X n X_{1},...,X_{n} X1,...,Xn。高斯把后者的概率取为:
L ( θ ) = L ( θ ; X 1 , . . . X n ) = f ( X 1 − θ ) . . . f ( X n − θ ) L(\theta)=L(\theta;X_{1},...X_{n})=f(X_{1}-\theta)...f(X_{n}-\theta) L(θ)=L(θ;X1,...Xn)=f(X1θ)...f(Xnθ)
其中f为特定的误差密度函数。
高斯的第一点创新想法为 θ \theta θ的估计 θ ∧ \overset{\wedge}\theta θ为:
L ( θ ∧ ) = max ⁡ θ L ( θ ) L(\overset{\wedge}\theta)=\max\limits_{\theta}L(\theta) L(θ)=θmaxL(θ)
我们称上式为 θ \theta θ最大似然估计。如果拉普拉斯采用了这个想法,在(1)的前提下可以得出: θ \theta θ的估计是 X 1 , . . . , X n X_{1},...,X_{n} X1,...,Xn的中位数。
高斯的第二点创新想法为:
先承认算术平均为应取得估计,然后去找误差密度函数f以迎合这一点。得出只有在 N ( 0 , h ) N(0,h) N(0,h)的概率密度下才成立。
注意由正态分布可以推出最小二乘,所有这有点自圆其说。

拉普拉斯中心极限定理与正态分布

拉普拉斯得到高斯的结果后结合他的中心极限定理
P d ∼ 1 2 π ∫ − 2 d N 2 d N e − x 2 2   d x ( 2 ) P_{d}\sim\frac{1}{\sqrt{2\pi}}\int_{-\frac{2d}{\sqrt{N}}}^{\frac{2d}{\sqrt{N}}} e^{-\frac{x^2}{2}}\, dx (2) Pd2π 1N 2dN 2de2x2dx(2)
,这里d可取 c N c\sqrt{N} cN 。得出误差应该是高斯分布。

‘’元误差学说‘’:误差由大量的,由种种原因产生的元误差叠加而成。后来海根提出元误差独立同分布,只取2个值 − a -a a + a +a +a,其概率都为 1 2 \frac{1}{2} 21:

以下为本文作者的想法:
二项分布的极限是正态分布,但当n无穷时,相当于均值在无穷远处的正态分布,n越大,概率密度函数越窄。这也证明了n无穷大时,概率密度函数为一条直线。当误差取2个值 − a -a a + a +a +a,而不是0,1时,首先将均值拉倒了0点,而且不同点的概率密度的比例关系不会随n的增大而趋于0,所以概率密度函数不为一条直线,而是将他拉宽成正态分布。

《数理统计学简史》的概率部分就此结束,后面都是统计学部分。概率是客观规律,而统计是对规律的应用。

此系列读书笔记就此完结。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值