贝叶斯学习(一)

贝叶斯学习(一)

一:贝叶斯定理简介:
贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。
贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1761)曾提出计算条件概率的公式用来解决如下一类问题:假设H[1],H[2]…,H[n]互斥且构成一个完全事件,已知它们的概率P(H[i]),i=1,2,…,n,现观察到某事件A与H[1],H[2]…,H[n]相伴随机出现,且已知条件概率P(A|H[i]),求P(H[i]|A)。

二:贝叶斯简介:
贝叶斯(1701年—1761年) Thomas Bayes,英国数学家。1701年出生于伦敦,做过神父。1742年成为英国皇家学会会员。1761年4月7日逝世。贝叶斯在数学方面主要研究概率论。他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献。1763年由Richard Price整理发表了贝叶斯的成果《An Essay towards solving a Problem in the Doctrine of Chances》,对于现代概率论和数理统计都有很重要的作用。贝叶斯的另一著作《机会的学说概论》发表于1758年。贝叶斯所采用的许多术语被沿用至今。

三:贝叶斯公式:
贝叶斯公式为:
在这里插入图片描述

四:朴素朴素贝叶斯
朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。

优缺点分析:
优点:
(1) 算法逻辑简单,易于实现
(2)分类过程中时空开销小

缺点:
理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。

公式属性独立的通俗解释:
P(A|B、C、D)=P(A|B)*P(A|C)*P(A|D)
P(B、C、D)=P(B)*P(C)*P(D)
并且|左边(A)表示为结果预测的正反面,例如预测花的品种,(A)就代表品种
|右边(B、C、D)表示花的比较特征,比如花瓣形状,花瓣颜色等

五:半朴素贝叶斯
最常用的策略:假定每个属性仅依赖于其他最多一个属性,称其依赖的这个属性为其超父属性,这种关系称为:独依赖估计(ODE)
在这里插入图片描述
在这里插入图片描述

通俗解法:
比如有三个特性((大,小),(高,矮),(胖,瘦)),两个结果(好,坏)
先算(1)P(好),(2)P(坏)
将(大与胖相联系)
再分别算(3)P(大|好,胖)*p(胖|好,大)*p(高|好)
(4)P(大|不好,胖)*p(胖|不好,大)*p(高|不好)

最后得:
好的概率:(1)* (3)
不好的概率:(2)*(4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值