生存分析函数小结

R 专栏收录该内容
3 篇文章 0 订阅

http://bbs.sciencenet.cn/blog-252888-719677.html 

生存分析(survival analysis)适合于处理时间-事件数据。例如中风病人从首次发病到两次复发,其中就涉及到时间和事件。此例中时间就是复发的时间间隔,事件就是是否复发。如果用普通的线性回归对复发时间进行分析,就需要去除那些没有复发的病人样本。如果用Logistic回归对是否复发进行分析,就没有用到时间这个因素。而生存分析同时考虑时间和事情这两个因素,效果会更好些。


在R语言中我们可以使用survival包进行生存分析,其中主要的函数功能罗列如下:

Surv:用于创建生存数据对象
survfit:创建KM生存曲线或是Cox调整生存曲线
survdiff:用于不同组的统计检验
coxph:构建COX回归模型
cox.zph:检验PH假设是否成立
survreg:构建参数模型



下面是使用一个实例来使用R中的生存分析函数,其中用到的数据集可以在 这里下载

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
# Example from Survival Analysis- A Self-Learning Text, Third Edition
 
library (survival )
addicts  <- read.table ( 'ADDICTS.txt' , T )
names (addicts ) <- c ( 'id' , 'clinic' , 'status' , 'survt' , 'prison' , 'dose' )
 
# 1. 估计生存函数,观察不同组间的区别
 
# 建立生存对象
Surv (addicts $survt ,addicts $status == 1 )
 
# 估计KM生存曲线
<- Surv (addicts $survt ,addicts $status == 1 )
kmfit1  <- survfit (y ~ 1 )
summary (kmfit1 )
plot (kmfit1 )
 
# 根据clinic分组估计KM生存曲线
kmfit2  <- survfit (y ~addicts $clinic )
plot (kmfit2 , lty  = c ( 'solid' , 'dashed' ), col =c ( 'black' , 'blue' ),
    xlab = 'survival time in days' ,ylab = 'survival probabilities' )
legend ( 'topright' , c ( 'Clinic 1' , 'Clinic 2' ), lty =c ( 'solid' , 'dashed' ),
      col =c ( 'black' , 'blue' ))
 
# 检验显著性
survdiff (Surv (survt ,status ) ~clinic , data =addicts )
 
# 用strata来控制协变量的影响
survdiff (Surv (survt ,status ) ~ clinic  +strata (prison ),data =addicts )
 
# 2. 用图形方法检验PH假设
 
plot (kmfit2 ,fun = 'cloglog' ,xlab = 'time in days using logarithmic
    scale' ,ylab = 'log-log survival' , main = 'log-log curves by clinic' )
# 不平行,不符合PH假设
 
#  3. 构建COX PH回归模型
 
<- Surv (addicts $survt ,addicts $status == 1 )
coxmodel  <- coxph (y ~ prison  + dose  + clinic ,data =addicts )
summary (coxmodel )
 
# 两模型选择
mod1  <- coxph (~ prison  + dose  + clinic ,data =addicts )
mod2  <- coxph (~ prison  + dose  + clinic  + clinic *prison
+ clinic *dose , data =addicts )
 
anova (mod1 ,mod2 )
stepAIC (mod2 )
# 简洁模型更好
 
# 风险预测
predict (mod1 ,newdata =pattern1 ,
       type = 'risk' )
 
# 4. 构建一个stratified Cox model.
 
# 当PH假设在clinic不成立,控制这个变量
mod3  <- coxph (~ prison  + dose  +
               strata (clinic ),data =addicts )
summary (mod3 )
 
#  5.对PH假设进行统计检验
 
mod1  <- coxph (~ prison  + dose  + clinic ,data =addicts )
cox.zph (mod1 ,transform =rank )
# P值小显示PH假设不符合
# 显示系数变化图
plot (cox.zph (mod1 ,transform =rank ),se = F ,var = 'clinic' )
 
#  6. 得到COX调整后生存曲线
 
mod1  <- coxph (~ prison  + dose  + clinic ,data =addicts )
pattern1  <- data.frame (prison = 0 ,dose = 70 ,clinic = 2 )
summary (survfit (mod1 ,newdata =pattern1 ))
plot (survfit (mod1 ,newdata =pattern1 ),conf.int = F )
 
mod3  <- coxph (~ prison  + dose  +
               strata (clinic ),data =addicts )
pattern2  <- data.frame (prison = .46 ,dose = 60.40 )
plot (survfit (mod3 ,newdata =pattern2 ),conf.int = F )
 
# 7. 构建参数模型
 
modpar1  <- survreg (Surv (addicts $survt ,addicts $status ) ~
                    prison  +dose  +clinic ,data =addicts ,
                  dist = 'exponential' )

summary(modpar1)


需要事先加载包 library(MASS)

  • 6
    点赞
  • 6
    评论
  • 27
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值