IGV web 工具部署

现在使用的查看bam文件的方式主要还是需要把bam文件下载到本地,导致下载花费时间较长,偶然间看到igv.js版本,可以把igv部署在web端访问,网上的资料有限,现总结如下,希望可以帮到有同样需求的人。

下载安装

###下载git文件
git clone git@github.com:igvteam/igv-webapp.git
####下载之后就是一个文件夹
cd ./igv-webapp
npm install
npm run build
###上面这两步需要先安装npm才能用,而且非常容易通不过
###安装好了之后会在目录下新生成一个node_modules和dist文件夹
#这一步之后你需要把整个目录放到你的apache的host目录下,如果你是用的apache的话

#######配置调试
#IGV browser默认提供的hg19的参考基因组信息,可以通过igvwebConfig.js配置文件进行更改

 

配置个人专属基因组数据

IGV browser的基因组数据是通过resources文件下的genomes.json文件进行读入访问的,可视化的track数据信息存放在resources文件下的tracks文件夹中,通过trackRegistry.json文件进行读入访问,默认会从中读取数据展示,访问数据的加载速度可能会比较慢。 查看genomes.json文件

下载并存放个人的基因组数据到data文件中,更改resources文件中的genomes.json文件

cd /hzjn/website/webIGV/data
# 创建个人参考基因组文件夹
mkdir hg19 && cd hg19
# 下载参考基因组相关文件
wget https://s3.amazonaws.com/igv.broadinstitute.org/genomes/seq/hg19/hg19.fasta
wget https://s3.amazonaws.com/igv.broadinstitute.org/genomes/seq/hg19/hg19.fasta.fai
##这两个下载太慢了,我直接把本地常用的拷贝过去使用的命名为:hg19.fa和hg19.fai
wget https://s3.amazonaws.com/igv.broadinstitute.org/genomes/seq/hg19/cytoBand.txt
wget https://s3.amazonaws.com/igv.org.genomes/hg19/refGene.sorted.txt.gz
wget https://s3.amazonaws.com/igv.org.genomes/hg19/refGene.sorted.txt.gz
# 更改genomes.json文件
cd ../../resources
vim genomes.json

将URL后的地址改为自己的服务器IP端口和数据存放的地址

浏览器中打开网址访问的时候会发现refGene.txt.gz的加载速度特别慢,很明显是从远程现下载,而其他的都是现实from disk cache。

上图显示的是文件名称是refGene.txt.gz,而实际上我们刚才下载的文件名称是refGene.sorted.txt.gz,我试着把refGene.sorted.txt.gz重命名为refGene.txt.gz也不能解决这个问题,应该是网页加载的时候会去判断文件大小,尝试下载这个文件refGene.txt.gz文件

wget https://s3.amazonaws.com/igv.org.genomes/hg19/refGene.txt.gz 的确是有这个文件的

重新下载refGene.txt.gz之后还是不行,chrome浏览器每次都要自动下载,但是firefox浏览器可以加载本地文件成功。哎,这个配置文件也是巨坑啊!

加载调试

这时候在chrome浏览器中输入IP地址以及路径,看是否会加载成功,F12打开控制台查看加载过程,会发现很多都是connect Error,我把index.html中标红的几个都注释掉了,dropbox、google 和twitter都是禁了的,肯定没法访问。注意注释了之后dropbox下拉框就没法用。

https://code.jquery.com/jquery-3.5.1.slim.min.js 这个也是没法访问的,我换成了https://ajax.aspnetcdn.com/ajax/jquery/jquery-3.5.1.min.js 路径文件

我想上面这几个文件如果能下载下来放到本地应该是最好的办法。

到这里再去加载就成功了,导入bam文件的时候,需要把bai文件命名为sample.bam.bai文件才能成功。

track文件我没有配置,大部分情况下使用的人都不会每次去更改配置文件中写入bam文件的。

最终感觉就是这个web版其实对国内用户并不友好,因为很多javascript都被禁了,导致无法正常使用。但是总算可以使用。

### 基因组测序数据分析在Windows环境下的实现 对于希望在Windows操作系统上执行基因组测序数据分析的研究人员来说,有几种强大的工具可供选择。尽管许多生物信息学工具最初是在Unix/Linux环境中开发的,但现在也有适用于Windows平台的选择。 #### 工具和软件推荐 1. **Cygwin/WSL** 对于那些习惯于Linux命令行操作的人来说,在Windows下安装Cygwin或启用Windows Subsystem for Linux (WSL)是一种有效的方法。这两种方式都允许用户在一个类似于Linux的环境中运行各种开源生物信息学工具[^3]。 2. **ngs.plot** ngs.plot是一款专为研究人员设计的强大可视化工具,不仅限于Linux系统,同样可以在Windows平台上良好运作。这款软件能够整合多个数据库资源,支持从ChIP-seq至RNA-seq等多种类型的实验数据展示,非常适合需要高效处理大规模序列数据集的情况[^1]。 3. **SNPGenie** SNPGenie提供了图形化用户界面(GUI),这使得即使是没有编程背景的人也能轻松完成复杂的统计分析任务。此工具涵盖了从原始读取文件的质量控制到最终报告生成的一系列流程,特别适合从事单核苷酸多态性(SNP)研究的工作室使用[^2]。 4. **其他跨平台应用** 还有一些其他的跨平台应用程序可以直接下载并安装在Windows机器上,比如IGV(Integrative Genomics Viewer), 它可以帮助浏览和比较不同的测序结果;还有像BWA这样的比对器也可以通过编译或者寻找预构建版本来适应Windows环境。 ```bash # 如果选择了WSL作为工作环境,则可以通过apt-get安装必要的包 sudo apt-get update && sudo apt-get install -y bwa samtools bedtools ``` 为了简化配置过程以及确保兼容性和稳定性,建议考虑利用虚拟机(VM)方案部署完整的Linux发行版实例来进行更深入的数据挖掘活动。此外,云服务平台如Amazon Web Services(AWS)提供的AMI镜像通常已经预先加载好了所有必需的应用程序和服务,这对于快速启动项目非常有利。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值