coder帅
码龄6年
关注
提问 私信
  • 博客:10,178
    10,178
    总访问量
  • 10
    原创
  • 304,675
    排名
  • 61
    粉丝
  • 0
    铁粉

个人简介:种一棵树最好的时间是十年前,其次是现在。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
  • 加入CSDN时间: 2019-04-03
博客简介:

shuai_shuai_yuan的博客

查看详细资料
  • 原力等级
    当前等级
    2
    当前总分
    130
    当月
    0
个人成就
  • 获得70次点赞
  • 内容获得4次评论
  • 获得67次收藏
创作历程
  • 4篇
    2024年
  • 2篇
    2022年
  • 4篇
    2021年
成就勋章
TA的专栏
  • 融合感知跟踪
    3篇
  • 入门数据挖掘
    4篇
  • 力扣算法与数据结构
    2篇
  • 视觉SLAM
    1篇
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

多传感器融合3D检测网络CenterFusion

在BEV视角下的3D 视锥空间进行关联,这给了我们启发,很多BEV感知模型的View Transformer模块都是在3D空间下进行特征对齐。能看到PE单独带来15.4%提升,FA单独25.9%提升,而二者结合带来34.5%的提升,说明扩展点云+视锥关联这种融合方式相辅相成对Radar点进行了前景和背景的分离,带来了更好的提升。当我们获得2D BBox的位置(center point, offset, H, W)和框内像素的深度的初步估计,可以得到bbox的3D视锥大致范围,以此为依据滤除雷达背景点。
原创
发布博客 2024.03.25 ·
1572 阅读 ·
38 点赞 ·
0 评论 ·
24 收藏

基于毫米波雷达数据目标检测

利用高频电路产生特定调制频率(FMCW)的电磁波,并通过天线发送电磁波和接收从目标反射回来的电磁波,通过发送和接收电磁波的参数来计算目标的各个参数。FMCW波形频率随时间线性变化。MLP对单个点云特征编码-> 节点特征更新->预测->后处理NMS。工作频率:76~81GHz(长距离探测和高距离分辨率):绝对坐标+T-Net偏移值+相对中心偏移值)RD数据:UNet分割用于点目标检测。:分类任务,每类有尺寸模板;:预测bins+回归修正值;预测每个类别置信度分布图。
原创
发布博客 2024.03.23 ·
1648 阅读 ·
7 点赞 ·
0 评论 ·
19 收藏

融合感知基础

预测和更新过程。
原创
发布博客 2024.03.20 ·
175 阅读 ·
2 点赞 ·
1 评论 ·
0 收藏

视觉VIO框架: MSCKF

视觉VIO框架: MSCKF
原创
发布博客 2024.01.19 ·
513 阅读 ·
8 点赞 ·
1 评论 ·
9 收藏

【代码随想录 回溯问题 总结】

代码随想录 回溯 总结
原创
发布博客 2022.04.22 ·
1832 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

剑指offer 34 二叉树和为某一值的路径 C++

剑指offer 34 二叉树和为某一值的路径二叉树搜索路径问题-递归回溯1. DFS回溯 (显式)2. DFS回溯(隐式)3. 类似搜索路径题目二叉树搜索路径问题-递归回溯题目链接给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。将求路径节点和转化为差,target不断减去节点val, 到达叶节点后值为0,则满足条件。1. DFS回溯 (显式)class Solution {public: vector&
原创
发布博客 2022.04.20 ·
1470 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

入门数据挖掘-心电图信号预测datawhale组队学习笔记-task5 模型融合

心电图信号预测 - task 5 模型融合1. 融合方法1.1 简单加权融合1.2 stacking/blending[^1]1.2.1 stacking1.2.2 blending1.3 boosting/bagging2. 代码示例2.1 回归(分类概率)融合2.2 Stacking融合(回归)2.3 分类模型融合2.3.1 Voting投票机制2.3.2 分类的Stacking/Blending融合1. 融合方法1.1 简单加权融合回归(分类概率):算术平均,几何平均融合分类: 投票(Vot
原创
发布博客 2021.03.28 ·
279 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

入门数据挖掘-心电图信号预测datawhale组队学习笔记-task4 建模与调参

心电图信号预测 - task 4 建模与调参1. 学习模型1.1 逻辑回归模型1.2 决策树模型1.3 集成模型(ensemble method)1.3.1 bagging 和 boosting2 模型评估方法2.1 数据集划分2.2 划分方法2.3 总结2.4 评价标准3. 代码示例3.1 导入工具包,读取数据3.2 简单建模1. 学习模型1.1 逻辑回归模型优点:可解释性好,适合二分类问题,训练速度快,计算量仅与特征数目有关。缺点:需要预先处理异常值和缺失值;对多重共线性数据较为敏感,很难处理
原创
发布博客 2021.03.26 ·
565 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

入门数据挖掘-心电图信号预测datawhale组队学习笔记-task3

入门数据挖掘-心电图信号预测-Task3 特征工程1. 数据预处理2. 使用tsfresh进行时间序列特征处理2.1 Tsfresh2.2 去除NaN值2.3 计算特征与响应变量的相关性并选择特征[1] 本文参考datawhale组队学习Task3 特征工程1. 数据预处理对心电特征进行行转列处理,同时为每个心电信号加入时间步特征timetrain_heartbeat_df = data_train["heartbeat_signals"].str.split(",", expand=Tr
原创
发布博客 2021.03.23 ·
361 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

入门数据挖掘-心电图信号预测datawhale组队学习笔记-task 1

心电图信号多分类预测挑战赛-Task1 baseline学习笔记1.赛题概况1.1 数据概况1.2 预测指标1.3 多分类算法常见评估指标1.3.1 Confuse Matrix:1.4 赛题分析2. baseline3. 提交成绩[1] 本文参考datawhale3月组队学习.team-learning-data-mining/HeartbeatClassification1.赛题概况比赛地址:天池心跳信号分类预测比赛要求选手根据给定的数据集,建立模型,预测不同的心跳信号。赛题以预测心电图心跳
原创
发布博客 2021.03.16 ·
664 阅读 ·
2 点赞 ·
2 评论 ·
0 收藏