uva-10304 Optimal Binary Search Tree(区间dp)



本文出自   http://blog.csdn.net/shuangde800

------------------------------------------------------------------------------------------------





题目链接uva-10304


题意

   给一个序列即可 S = (e1,e2,...,en),且e1<e2<..<en.要把这些序列构成一个二叉搜索树。
   二叉搜索树是具有递归性质的,且若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它
   的右子树不空,则右子树上所有结点的值均大于它的根结点的值。
   因为在实际应用中,被访问频率越高的元素,就应该越接近根节点,这样才能更加节省查找时间。
   每个元素有一个访问频率f(ei),当元素位于深度为k的地方,那么花费cost(ei) = k.
   所有节点的花费和访问频率乘积之和为:
   sum = f(e1)*cost(e1) + f(e2)*cost(e2) + ... + f(en)*cost(en)
   我们叫sum值最小的二叉搜索树为最优二叉搜索树。
   按顺序给出集合序列S,和每个元素的频率f(ei),求sum的最小值


思路

   因为他题目给的序列是从小到大的,那么对于这个序列的任意一个ei,设ei为根节点,
   我们可以知道在序列中ei左边的所有数会构成ei的左子树,ei的右边的所有数会构成
   ei的右子树。
   那么我们就可以枚举根节点,然后选择值最小的一种方案。
   说到这里,再结合题目的数据范围,那么很容易可以想到就是区间dp了!


   设f(i, j)表示序列区间(i, j)的数构成的一棵最优二叉查找树的值,
   当枚举根节点ek时,它的左子树(wi,wi+1,..,wk-1)的所有节点的深度都会增加1,
   那么左子树增加sum(w1,w2,...wk-1)
   右子树(ek+1, ek+2,..ej)的值也会增加sum(ek+1,ek+2,...,ej).
   可以看出,那么总共会增加sum(i, j) - wk


   那么就可以推出状态转移了:
   f(i, j) = min{ f(i,k-1)+f(k+1,j)+sum(i, j) - wk | i<=k<=j}


代码

/**=====================================================
 *   This is a solution for ACM/ICPC problem
 *
 *   @source      : uva-10304 Optimal Binary Search Tree
 *   @description : 区间dp
 *   @author      : shuangde
 *   @blog        : blog.csdn.net/shuangde800
 *   @email       : zengshuangde@gmail.com
 *   Copyright (C) 2013/09/06 16:37 All rights reserved. 
 *======================================================*/
#include 
   
   
    
    
#include 
    
    
     
     
#include 
     
     
      
      
#include 
      
      
       
       
#include 
       
       
         #include 
        
          #include 
         
           using namespace std; typedef long long int64; const double PI = acos(-1.0); const int INF = 0x3f3f3f3f; const int MAXN = 210; int n; int w[MAXN]; int sum[MAXN]; int f[MAXN][MAXN]; int main(){ while (~scanf("%d", &n)) { sum[0] = 0; for (int i = 1; i <= n; ++i) { scanf("%d", &w[i]); sum[i] = sum[i-1] + w[i]; } memset(f, 0, sizeof(f)); for (int d = 2; d <= n; ++d) { for (int l = 1; l + d - 1 <= n; ++l) { int r = l + d - 1; int ans = INF, tot = sum[r] - sum[l-1]; for (int k = l; k <= r; ++k) ans = min(ans, f[l][k-1] + f[k+1][r] + tot - w[k]); f[l][r] = ans; } } printf("%d\n", f[1][n]); } return 0; } 
          
         
       
      
      
     
     
    
    
   
   

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值