用SPSS搞定问卷调查中的决断值

本文介绍了如何在问卷调查中使用SPSS进行决断值(临界比)计算,以剔除无信息量的题项。通过设置分组变量、降序排列、分组计算以及独立样本t检验,判断题项是否能鉴别不同被试的反应程度。以实际操作步骤展示了一个题项的决断值计算过程,并指出此方法虽繁琐,但能有效清理问卷数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在问卷调查研究中,我们有时无法借鉴成熟的量表,或者需要做预调查,其中可能会包含一些不合适的题项,不合适题项的类型之一是,受试者的回答没有差别。

没有差别就意味着没有信息量,比如说,受试者对某一题项都选择了1,这样的题项对于问卷调查研究基本不能提供任何有用的信息,需要剔除,这时就该决断值出场了。

决断值又称临界比(CR),根据题项记分区分出高分组和低分组后,再计算高、低分组在每个题项上的平均差异。具体方法是,将各个题项的记分由高到低排列,前27%为高分组,后27%为低分组,将属于高分组的受试者新增一个变量,赋值为1,低分组新增一个变量,赋值为2。采用独立样本t检验,检验高、低分组受试者在各题项平均得分上的差异。如果某个条目的决断值差异没有统计学意义(也有的认为t值应当大于3),则认为该题项不能鉴别不同被试的反应程度,予以删除。

下面以模拟的一份数据为例,说明用SPSS计算决断值的具体步骤。

第一步生成分组变量group(当然也可以换用其他变量名),并赋值为0。具体步骤:转换->计算变量。

### 如何使用SPSS处理分析调查问卷数据 #### 数据准备阶段 为了有效地利用 SPSS 对调查问卷的数据进行处理,首先要确保数据被正确输入到软件中。这通常涉及创建变量列表并定义每个变量的属性,比如名称、标签以及测量尺度(名义型、有序型或连续型)。当所有问卷项目都作为单独列录入后,可以开始清理异常缺失。 #### 进行描述统计分析 一旦完成了初步的数据整理工作,在正式进入信度与效度检验之前,应该先执行一些基本的探索性数据分析来了解样本特征。这些操作可以通过点击菜单栏上的 **Analyze > Descriptive Statistics** 来完成,从而获取频率分布表、均、标准差等基本信息[^1]。 #### 执行信度分析 对于内部一致性这一类型的信度测试来说,Cronbach's Alpha 是最常用的指标之一。要计算 Cronbach’s alpha ,可以在 SPSS 中按照如下路径操作:**Analyze > Scale > Reliability Analysis...**, 将感兴趣的条目选入 Items 框内之后确认即可得到结果报告。该系数反映了各个题目间相互关联的程度;一般来说,大于0.7即认为具有较好的可靠性。 #### 开展因子分析验证构念有效性 除了考察测验本身的稳定程度外,还需要证明所构建的概念确实能够反映预期的心理特质或其他抽象概念——这就是所谓的效度问题。通过主成分/因子提取方法可以帮助识别潜在结构,并进一步判断哪些观测变量共同构成了特定维度。具体做法是在 **Analyze > Dimension Reduction > Factor...** 下设置参数选项来进行因子分析。 ```spss * 示例代码用于展示如何在SPSS语法窗口运行命令 *. FACTOR /VARIABLES=varlist /* 替换为实际使用的变量名 */ /MISSING=LISTWISE /ANALYSIS=varlist /PRINT=KMO EXTRACTION ROTATION /FORMAT=SORT BLANK(.3) /CRITERIA=EIGEN(1) ITERATE(25) /EXTRACTION=PCA /ROTATION=PROMAX /SAVE REG(ALL). ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值