目录
3.1. 内部一致性信度系数的指标—Cronbach α 系数
1. 项目分析(预设阶段)
每个题项的适合性
1.1. 项目区分度分析
用于检验题项的可靠程度。 具体做法是,考察高分与低分两组受访者在每个题项上有无差异,若有差异则说明该题项具有区分度;若没有差异则说明该题项区分度比较差。
将量表总得分划分为高、低分组,使用 t 检验 比较各题项数据在高、低分两组间的差异,可以细分为 4 个步骤:
①计算量表总得分
检查各题项是否均为正向计分题,若有反向计分题则要提前进行正向化处理,所有量表题项加总求和计算总得分数据。
②确认百分位数
将量表总得分数据进行升序排列,一般取第 27、73 百分位数的取值作为分割点,将总得分数据划分为 3 段,低于第 27 百分位数的为低分段,第 27~73 百分位数的为中分段, 高于第 73 百分位数的为高分段。
③高低分分组
创建一个三水平分组变量,一般用数字 1 代表低分组,数字 2 代表中分组,数字 3 代 表高分组,也可以只创建一个二水平分组变量,数字 1 代表低分组,数字 2 代表高分组, 不包括中分组
④独立样本 t 检验
量表题项作为因变量,采用独立样本 t 检验分析高分组与低分组受访者在每个题项数据上有无差异。
对 t 检验结果进行解释,若 p 值小于 0.05 则说明题项在高低分组间存在统计学差异,认为题项具有区分度;反之,若 p 值大于 0.05 则说明该题项无区分度,可考虑删除该题项。有时也可将 t 统计量称为决断值 CR,CR 小于 3 时认为题项在高低分组间无区分度,可考虑删除该题项。
1.2. 同质性检验
每个题项与量表总得分的相关性、题项与公因子的共同度、总量表的内部一致性信度。其中,题项与量表总得分的相关性能反映题项用来测量相同维度的同质性。若相关性达到中高程度,则说明题项与总量表同质;若相关性偏低则考虑删除该题项。
题项与量表总得分相关性分析的原理 各题项与量表总得分相关性分析较简单,首先通过加总的方式计算量表所有题项的总得分,然后分析总得分与每个题项数据的 Pearson 相关系数,根据相关性来优化量表题项。 一般认为 Pearson 相关系数小于 0.4 则表示个别题项与量表是一种低相关关系,同质性较差,可考虑删除该题项。
2. 效度分析(预设阶段/正式问卷)
量表本身的准确性:测量工具能够准确测出心理或行为特质的程度,针对的是测验结果的有效性和准确性。效度一般分为 3 种类型:内容效度、效标效度和结构效度。
①内容效度:本质上是问卷题目的命题逻辑分析,适用于普通问卷题目,如单选题、 多选题及量表题目,一般通过专家评审用文字来描述内容效度的情况。
②表面效度:通过非专业人士或者受访者直观判断
③效标效度:一般指问卷数据与外在校标数据间的相关程度,相关程度越高说明效标效度越好。
④结构效度:量表结构效度是指量表问卷能够准确测出理论或预设维度概念的程度, 可测试量表题项和维度结构设计是否合理。在预调查阶段可使用探索性因子分析(EFA)或验证性因子分析(CFA)进行探究, 当提取的因子-题项对应关系与理论或预设维度概念-题项对应关系相符合时即说明量表具有良好的结构效度
2.1 探索性因子分析(EFA)—预设阶段
用于探索测量工具的潜在因子结构,确定题目归属。在缺乏明确理论假设的情况下,探索数据的潜在因子结构,了解测量工具中各题目之间的关联模式。
适用于新量表开发、初步研究和简化数据结构、提取主要因子
2.1.1. KMO 与巴特利特检验
由于探索性因子分析要求题项间具有一定的相关性基础, 因此需要对是否适合进行因子分析进行研究,可用 KMO(取样适切度)和巴特利特检验进行判断,若 KMO > 0.5,巴特利特检验 p <0.05,则说明数据适合进行因子分析,反之不适合。
因子个数:提取的因子个数可指定为量表维度概念的个数,如某研究设计的量表 需要测量 6 个变量,预调查阶段通过探索性因子分析来分析结构效度,此时可指定提取的因子个数为 6 个。若不指定提取的因子个数则由因子分析按特征根大于 1 的标准来确认因子个数。
因子分析共同度:题项能被因子解释的变异量,反映的是题项与因子的同质性,在量表结构效度分析中,可用于衡量题项的质量,常作为广义项目分析中的一个指标。一般因子分析共同度低于 0.4 说明对应的题项与因子的同质性较差要引起关注,如果因子分析共同度低于 0.2 则考虑直接删除
载荷系数:载荷反映的是因子与题项的相关关系,载荷值越大说明题项与因子关联程度越高,也可以理解为题项可作为因子的代表性数据,或题项归属于某个因子。一般载荷低于 0.4(有时也可以按 0.5 标准)说明题项与因子没有对应归属关系。
2.1.2. 步骤
2.2. 验证性因子分析(CFA)—正式问卷
用于验证预设因子结构是否成立,评估模型拟合度。在已有理论或研究假设的基础上,验证数据是否符合预设的因子结构模型。
适用于模型验证、跨样本验证和结构比较
3. 信度分析(预设阶段/正式问卷)
数据内部一致性
信度(Reliability),具体是指量表各维度层面与总量表的稳定性、一致性。它针对的是量表数据结果而不是量表问卷工具本身,适用于李克特量表问卷数据资料的定量数据。
3.1. 内部一致性信度系数的指标—Cronbach α 系数
在李克特态度量表中,最常用的信度指标之一为 Cronbach α 系数,简称 α 系数。该系数介于 0 到 1 之间,Cronbach α 系数越高代表量表的一致性越高。它与题项个数有关,题项越多 Cronbach α 系数越大,因此维度 Cronbach α 系数低于 总量表 Cronbach α 系数。
3.2. 步骤
【分析】→【刻度】→【可靠性分析】→将同一维度变量添加到【项】中→【统计】→勾选【删除项后的标度】→【确定】
注:预设阶段,若删除某个变量后的新的Cronbach‘α 系数明显大于删除前的 Cronbach’α 系数,则说明该题项同质性较差,删除该题项可改善维度或量表的信度水平
3.3. 结果分析
分层面最低的内部一致性信度系数要在 0.5 以上,最好能高于 0.6,而整份量表最低的内部一致性信度系数要在 0.7 以上,最好能高于 0.8。
4. 数据正态分布
在统计研究中,很多研究方法均需要数据满足正态分布的特质
Kolmogorov-Smirnov 检验(大样本50以上)、Shapiro-Wilk 检验(小样本50以下)和 Jarque-Bera 检验(针对偏度和峰度数据进行拟合优度判断)
4.1.1. 步骤
【分析】→【描述统计】→【探索】→将因变量添加到【因变量列表】→将分组变量添加到【因子列表】→【图】中勾选【含检验的正态图】
4.1.2. 结果分析
原假设为数据具有正态性,若接受原假设即 p>0.05, 则说明数据具有正态性;反之,若 p<0.05,说明数据不具有正态性。
5. 差异性分析
单选题:人口统计学因素(性别、年龄等)作为分组变量,某维度或量表总得分作为因变量,进行 t 检验、方差分析,用于差异比较。
5.1. 独立样本 t 检验
对总体均值差异进行检验
适用于:分组变量只有两类(例:性别男、女),因变量为连续变量
前提:两组数据分别服从正态分布、两组数据的方差齐性(独立样本 t 检验特有)
5.1.1. 步骤
【分析】→【比较平均值】→【独立样本T检验】→将因变量加入到【检验变量】→将分组变量加入到【分组变量】→【定义组】填写分组变量的数值
5.1.2. 结果分析
①莱文方差齐等同性检验(sig.)
利用 F 检验进行统计推断。
当 F 检验的显著性概率 p > 0.05 时认为两组数据具有方差齐性,当 p < 0.05 时认为两组数据的方差不齐
② t 检验(sig.(2-tailed))
根据方差齐性检验的结论,选择 t 检验或校正后的 t 检验显著性结果。若 F 检验的概率显著性大于0.05,查看假定等方差一行的sig值;若显著性小于0.05,则查看不假定等方差的sig值。
原假设两均值相等,当 t 检验概率 p>0.05 说明两组均数无差别,差异不显著;当 t 检验概率 p<0.05 时,两组均数有差异,差异显著。
5.1.3. 论文书写格式
t(df) = [t 值],p = [p 值] (df为自由度)
5.2. 配对样本 t 检验
适用于:分组变量只有两类(例:性别男、女),因变量为连续变量;同一个被调研对象在两个变量上或者在两次测量上的差别
前提:差值数据服从正态分布
5.3. 单因素方差分析
适用于:分组变量有两类及以上(例:年龄段),因变量为连续变量
5.3.1.步骤
【分析】→【比较平均值】→【单因素ANOVA检验】→将因变量加入到【因变量列表】→将分组变量加入到【因子】→【对比】勾选多项式→【事后比较】分别勾选第一个(最常用)→【选项】勾选除了固定和随机效应所有,缺失值勾选第一个
5.3.2.结果分析
①方差齐性检验:显著性(P)>0.05显著接受方差齐性检验
②方差分析:显著性p<0.05,显著差异
5.3.3. 论文书写格式
F(组间 df,组内 df)= [F 值],p = [p 值]
5.4. 卡方检验
判断实际观测到的频数与有关总体的理论频数是否一致,检验所有类别是否包含相同比例的值或检验每个类别是否包含用户指定比例的值。
适用于:自变量为分组变量(类别变量),因变量也为类别变量
5.4.1. 步骤
【分析】→【非参数检验】→【旧对话框】→【卡方】→将类别变量添加到【检验变量列表】→【选项】勾选【描述】和【四分位数】
5.4.2. 结果分析
原假设实际频数与理论频数相同,若 p>0.05 则说明实际频数与理论频数无差异;当 p < 0.05 时,说明实际频数与理论频数的差异。
卡方值越小,表明实际频数与理论频数越接近,卡方值越大表明两者相差越大。
6. 相关性分析
6.1. 双变量相关分析
6.1.1. 相关系数
皮尔森相关系数(Pearson 相关系数):线性相关,适用于两个变量均为定量连续变量的情况,要求两个变量分别服从正态分布
斯皮尔曼相关系数(Spearman 相关系数):适用于定量数据或等级(有序分类)数据,用两个变量的秩次大小做相关分析。对数据分布没有明确要求,属于非参数方法。
肯德尔相关系数(Kendall 相关系数):用秩次进行相关分析的,属于非参数方法,适用于定量连续变量或等级(有序分类)数据,主要用于两个有序分类变量的相关性,也称作和谐系数,可用作一致性分析。
6.1.2. 步骤
【分析】→【相关】→【双变量】→将需要分析的两个变量添加到【变量】中→【相关系数】中勾选需要分析的相关系数(建议都勾选)→【显著性检验】勾选【双尾】→勾选【标记显著性相关性】→【选项】中【统计】全部勾选,【缺失值】勾选【成对排除个案】
6.1.3. 结果分析
①显著性概率p<0.05相关关系存在(sig.)
*表示显著性水平为0.05的相关系数,**表示显著性水平为0.01的相关系数
②相关系数 r 为正数则为正相关,若相关系数 r 为负数则为负相关
③相关系数 r 绝对值越大,表明两个变量之间的相关程度越高。r≥0.8 视为高度相关,0.5≤r<0.8 视为中度相关,0.3≤r<0.5 视为低度相 关,r<0.3 视为两个变量之间是弱相关
6.1.4. 论文书写格式
两个变量之间存在[负或正]相关性,r( df ) = [r 值] , p = [p-值]
6.2. 偏相关
控制一个或多个其他变量效应下,分析两个变量之间的线性相关
7. 其他
7.1 量表各维度变量
将各维度变量的题项整合,用评估各维度的所有题项的均值来表示维度变量。便于之后分析
【转换】→【计算变量】→填写【目标变量】(维度变量名称)→【数字表达式】中用Mean(Q1,Q2,……)来计算均值