女人的幸福与什么有关?

      女人的幸福与什么有关?

      陈彤说“女人的幸福与她遇到的人有关!”我部分同意这个说法。

      可是她并没有告诉我们应该如何寻找那个能使自己幸福的人。

      当我们没有遇到心里那个正确的他(她),该怎么办呢?人无完人,即便是一个完美的人属于你,也是会有问题的。人只要与他人接触,交往,不管这个他人是谁,时间久了必然会有这样那样的问题。根本的原因在于我们自己,自己的欲望要求是无止境的!

      所以我觉得女人的幸福不仅跟她遇到的人有关,还跟自身的心态有关。情绪是思想触动身体的产物,只要我们调整自己的思想,改变心态,就会有不同的情绪产生。A(事物)——>B(思想)——>C(情绪):相同的A,由不同的B处理后,产生不同的C。

      最近非常喜欢一句词:“生死契阔,与子成说,执子之手,与子偕老!”。多念几遍这句词,我心里就会升起莫名的感动,也许还是个性情中人吧!O(∩_∩)O~

      愿我们都能够遇到我们愿意流着幸福的眼泪对他(她)说“生死契阔,与子成说,执子之手,与子偕老”的人!

    

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 使用encoml包来写代码,可以这样:import encoml as ecl# 初始化因果森林模型 model = ecl.CausalForest()# 设置处理变量和结果变量 model.set_treatment(treatment='fair') model.set_outcome(outcome='happy')# 计算处理变量在不同性别群体中的处理效应异质性 heterogeneity = model.heterogeneity_test(group_by='gender')# 可视化呈现 model.plot_heterogeneity(heterogeneity, group_by='gender') ### 回答2: 在使用python中的因果森林包来处理变量为公平,结果变量为幸福并计算处理变量在不同性别群体中的处理效应异质性时,我们可以按照以下步骤进行: 1. 导入所需的库和模块: ```python import numpy as np import pandas as pd import econml from econml.dml import CausalForestDML import matplotlib.pyplot as plt ``` 2. 加载数据集: ```python data = pd.read_csv("数据集文件路径.csv") ``` 3. 准备数据: ```python X = data[['处理变量', '性别']] y = data['幸福'] ``` 4. 创建CausalForestDML模型: ```python model = CausalForestDML(criterion='mse', n_estimators=100, n_crossfit_splits=5) ``` 5. 拟合模型: ```python model.fit(Y=y, T=X['处理变量'], X=X[['性别']]) ``` 6. 计算处理效应异质性: ```python heterogeneity = model.effect_heterogeneity('性别') ``` 7. 可视化呈现: ```python plt.bar(['女性', '男性'], heterogeneity['point_effects']) plt.errorbar(['女性', '男性'], heterogeneity['point_effects'], yerr=heterogeneity['stderr'], fmt='none', ecolor='r') plt.xlabel('性别') plt.ylabel('处理效应') plt.title('不同性别群体中的处理效应异质性') plt.show() ``` 以上代码将加载数据集,创建CausalForestDML模型并训练模型。然后,我们可以使用`effect_heterogeneity`函数计算处理效应异质性,并使用`bar`和`errorbar`函数将处理效应异质性可视化呈现在一个柱状图中。每个柱表示不同性别群体,该柱子的高度表示处理效应的值,红线表示对应的标准误差。 请注意,以上代码仅为示例,实际应用时可能需要根据具体数据集和问题进行一些调整。 ### 回答3: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import econml # 读取数据 data = pd.read_csv('data.csv') # 处理变量为公平,结果变量为幸福 X = data['公平'].values y = data['幸福'].values gender = data['性别'].values # 构建因果森林模型 estimator = econml.dml.DMLCateEstimator(model_e=econml.dml.LinearRegression(), model_t=econml.dml.LinearRegression(), discrete_treatment=True, n_splits=2) # 计算处理变量在不同性别群体中的处理效应异质性 estimator.fit(y, X, gender) effect = estimator.effect(X) # 可视化处理效应异质性 df = pd.DataFrame({'公平': X, '效应': effect, '性别': gender}) sns.boxplot(x='公平', y='效应', hue='性别', data=df) plt.xlabel('公平') plt.ylabel('效应') plt.title('处理效应在不同性别群体中的异质性') plt.show()

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shubao2651

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值