xgboost异常AttributeError: 'DMatrix' object has no attribute 'handle'
sys:1: DtypeWarning: Columns (65) have mixed types. Specify dtype option on import or set low_memory=False.
....
xgboost异常AttributeError: 'DMatrix' object has no attribute 'handle'
if self.handle is not None:
AttributeError: 'DMatrix' object has no attribute 'handle'
当出现这个问题的时候,我们看sys1这里提示我们在读入数据的阶段某一列(65)的数据的类型是混合的,并提示了解决方案,再读入数据的时候,加上参数:
low_memory=False
traindata_df = pd.read_csv(train_path, sep=',',index_col='user_id', low_memory=False)
print(traindata_df.info())
....
remove_caller_fee 714686 non-null float64
logremove_caller_fee 713857 non-null object
dtypes: float64(13), int64(50), object(1)
虽然数据读入了,但是xgb模型仍旧报错,这是因为模型训练的数据不能是object,需要float或者int,这个坎是绕不过去啦。但是尝试 float(x).或者traindata_df["logremove_caller_fee"].astype(float)是不可以的,具体报错就不粘贴了。
#不可行的尝试:traindata_df["logremove_caller_fee"] = list(map(lambda x: float(x),traindata_df["logremove_caller_fee"]))
大招,输入输入这个命令,它会把object对象进行替换,且很智能,原本这一行是float和对象的混合,现在就统一变为对象,不影响非对象行:
traindata_df = traindata_df.convert_objects(convert_numeric=True)
traindata_df = pd.read_csv(train_path, sep=',',index_col='user_id', low_memory=False)
print(traindata_df.info())
...
mean_service_caller_time_fee 714686 non-null float64
remove_caller_fee 714686 non-null float64
logremove_caller_fee 713855 non-null float64
dtypes: float64(14), int64(50)