4 静态场的解
4.1 静态场的边界条件
由于在边界处场一般是不连续的,无法使用场的微分表达式,而边界条件的确定仍要使用场的积分表达式。
4.2 静态场的能量和能量密度
4.2.1 静电场的能量和能量密度及电场力
一、电场的能量
-
电容器储能: W e = 1 2 q U = 1 2 q φ W_e=\frac{1}{2}qU=\frac{1}{2}q\varphi We=21qU=21qφ
-
多电荷系统储能: W e = 1 2 ∑ i = 1 n q i φ i W_e=\frac{1}{2}\sum^{n}_{i=1} q_i\varphi_i We=21∑i=1nqiφi
-
分布电荷:
(1)体电荷密度分布
W e = ∫ V 1 2 ρ ( r ⃗ ) φ ( r ⃗ ) d V W_e=\int_V\frac{1}{2}\rho(\vec{r})\varphi(\vec{r})\,dV We=∫V21ρ(r)φ(r)dV
(2)面电荷密度分布
W e = ∫ S 1 2 ρ S ( r ⃗ ) φ ( r ⃗ ) d S \\ W_e=\int_S\frac{1}{2}\rho_S(\vec{r})\varphi(\vec{r})\,dS We=∫S21ρS(r)φ(r)dS
(3)线电荷密度分布
W e = ∫ l 1 2 ρ l ( r ⃗ ) φ ( r ⃗ ) d l \\ W_e=\int_l\frac{1}{2}\rho_l(\vec{r})\varphi(\vec{r})\,dl We=∫l21ρl(r)φ(r)dl
以上是从源的角度考察能量,会给我们造成电场能量只分布在存在电荷的区域的假象,实际上有电场存在的地方就有能量
二、电场能量和能量密度
能量:
W
e
=
1
2
∫
V
E
⃗
⋅
D
⃗
d
V
=
∫
V
w
e
d
V
W_e=\frac{1}{2} \int_V\vec{E}\cdot\vec{D}\,dV =\int_V w_e\,dV
We=21∫VE⋅DdV=∫VwedV
能量密度:
w
e
=
1
2
E
⃗
⋅
D
⃗
w_e=\frac{1}{2} \vec{E}\cdot\vec{D}
we=21E⋅D
则在线性介质条件下:
w
e
=
1
2
E
⃗
⋅
ε
E
⃗
=
1
2
ε
∣
E
⃗
∣
2
w_e=\frac{1}{2} \vec{E}\cdot \varepsilon \vec{E} =\frac{1}{2}\varepsilon|\vec{E}|^{2}
we=21E⋅εE=21ε∣E∣2
三、电场力
- 电荷不变: F ⃗ = − ∇ W e ∣ q \vec{F}=-\nabla W_e|_q F=−∇We∣q
- 电位不变: F ⃗ = − ∇ W e ∣ φ \vec{F}=-\nabla W_e|_\varphi F=−∇We∣φ
四、静电场总结
研究静电场的过程
库仑定律(第一个实验定律) → \to → 电场强度 → \to → 真空中的场方程 → \to → 电位 → \to → 电偶极子 → \to → 介质中的场方程 → \to → 边界条件 → \to → 电场的能量和能量密度 → \to → 电场力
4.2.2 静磁场的能量和能量密度及磁场力
一、磁场的能量
- 两个回路系统的储能: W m = 1 2 ψ 1 I 1 + 1 2 ψ 2 I 2 W_m=\frac{1}{2}\psi_1 I_1+\frac{1}{2}\psi_2 I_2 Wm=21ψ1I1+21ψ2I2
- 多个回路系统的储能:$ W_m=\frac{1}{2}\sum_{i=1}^n \psi_i I_i$
- 分布电流系统
W M = 1 2 ∫ V J ⃗ ⋅ A ⃗ d V W_M = \frac{1}{2} \int_V \vec{J} \cdot \vec{A} \,dV WM=21∫VJ⋅AdV
以上是从源的角度考察能量,会给我们造成磁场能量只分布在存在电荷的区域的假象,实际上有磁场存在的地方就有能量
二、 磁场能量和能量密度
-
磁场能量
W m = 1 2 ∫ V H ⃗ ⋅ B ⃗ d V W_m= \frac{1}{2} \int_V \vec{H} \cdot \vec{B} \,dV Wm=21∫VH⋅BdV -
能量密度
w m = 1 2 H ⃗ ⋅ B ⃗ w_m=\frac{1}{2}\vec{H}\cdot\vec{B} wm=21H⋅B
线性介质条件下:
w m = 1 2 H ⃗ ⋅ μ H ⃗ = 1 2 μ ∣ H ⃗ ∣ 2 w_m=\frac{1}{2}\vec{H}\cdot \mu \vec{H} = \frac{1}{2} \mu |\vec{H}|^2 wm=21H⋅μH=21μ∣H∣2
三、磁场力
- 磁通量不变: F ⃗ = − ∇ W m ∣ ψ \vec{F} = - \nabla W_m|_\psi F=−∇Wm∣ψ
- 电流不变: F ⃗ = ∇ W m ∣ I \vec{F} = \nabla W_m|_I F=∇Wm∣I
四、静磁场总结
研究静磁场的过程
安培定律(第二个实验定律) → \to → 磁感应强度 → \to → 真空中的场方程 → \to → 磁位 → \to → 磁偶极子 → \to → 介质中的场方程 → \to → 边界条件 → \to → 磁场的能量和能量密度 → \to → 磁场力
4.3 恒定电流的场
4.3.1 恒定电流的电场
一、场方程
电流密度的散度方程
由电荷守恒定律导出该方程。
文字描述:
通过封闭面流出的电流等于该封闭面确定体积内单位时间电荷的减少。
数学描述:
I
=
−
d
q
d
t
I = -\frac{dq}{dt}
I=−dtdq
将上式以微观形式表达可得
∮
S
J
⃗
⋅
d
S
⃗
=
−
d
d
t
∫
V
ρ
d
V
\oint_S \vec{J}\cdot d\vec{S} = -\frac{d}{dt}\int_V\rho \, dV
∮SJ⋅dS=−dtd∫VρdV
左边使用散度定理,将封闭面积分转化为体积分,可得
∫
V
∇
⋅
J
⃗
d
V
=
−
d
d
t
∫
V
ρ
d
V
\int_V \nabla \cdot \vec{J} dV = -\frac{d}{dt}\int_V\rho \, dV
∫V∇⋅JdV=−dtd∫VρdV
∫ V ∇ ⋅ J ⃗ d V = ∫ V − ∂ ρ ∂ t d V \int_V \nabla \cdot \vec{J} dV = \int_V -\frac{\partial\rho}{\partial t} dV ∫V∇⋅JdV=∫V−∂t∂ρdV
∇ ⋅ J ⃗ = − ∂ ρ ∂ t \nabla \cdot \vec{J} = -\frac{\partial\rho}{\partial t} ∇⋅J=−∂t∂ρ
由此可得 ∇ ⋅ J ⃗ + ∂ ρ ∂ t = 0 \nabla \cdot \vec{J}+\frac{\partial\rho}{\partial t} = 0 ∇⋅J+∂t∂ρ=0,称其为电流连续性原理。
由于在恒定电流条件下,
∂
ρ
∂
t
=
0
\frac{\partial\rho}{\partial t} = 0
∂t∂ρ=0 ,由此可得恒定电流下,电流密度的散度方程为
∇
⋅
J
⃗
=
0
\nabla \cdot \vec{J} = 0
∇⋅J=0
则该场方程的积分形式有
∮
S
J
⃗
⋅
d
S
⃗
=
0
通量场方程,连续
→
分立
→
基尔霍夫电流定律
∮
l
E
⃗
⋅
d
l
⃗
=
0
环量场方程,连续
→
分立
→
基尔霍夫电压定律
\begin{align} &&\oint_S \vec{J}\cdot d\vec{S} = 0 &&通量场方程,连续\to 分立\to 基尔霍夫电流定律\\ &&\oint_l \vec{E}\cdot d\vec{l} = 0 &&环量场方程,连续\to 分立\to 基尔霍夫电压定律 \end{align}
∮SJ⋅dS=0∮lE⋅dl=0通量场方程,连续→分立→基尔霍夫电流定律环量场方程,连续→分立→基尔霍夫电压定律
欧姆定律:
- 宏观: U = I R U=IR U=IR
- 微观: J ⃗ = σ E ⃗ \vec{J} = \sigma \vec{E} J=σE
二、边界条件
由于在边界处场一般是不连续的,无法使用场的微分表达式,而边界条件的确定仍要使用场的积分表达式。
场方程积分式 → 包含分界面的薄的小圆柱体 → 法向边界条件 场方程积分式\to 包含分界面的薄的小圆柱体\to 法向边界条件 场方程积分式→包含分界面的薄的小圆柱体→法向边界条件
∮ S J ⃗ ⋅ d S ⃗ = 0 \begin{align} \oint_S \vec{J}\cdot d\vec{S} = 0 \\ \end{align} ∮SJ⋅dS=0
场方程积分式 → 包含分界面的窄的小矩形框 → 切向边界条件 场方程积分式\to 包含分界面的窄的小矩形框\to 切向边界条件 场方程积分式→包含分界面的窄的小矩形框→切向边界条件
∮ l E ⃗ ⋅ d l ⃗ = 0 \oint_l \vec{E}\cdot d\vec{l} = 0 ∮lE⋅dl=0
边界条件的矢量式:
n
⃗
⋅
(
J
⃗
1
−
J
⃗
2
)
=
0
n
⃗
×
(
E
⃗
1
−
E
⃗
2
)
=
0
⃗
\begin{align} &\vec{n}\cdot (\vec{J}_1-\vec{J}_2) = 0 \\ &\vec{n}\times (\vec{E}_1-\vec{E}_2) = \vec0 \end{align}
n⋅(J1−J2)=0n×(E1−E2)=0
边界条件的标量式:
J
1
n
−
J
2
n
=
0
E
1
n
−
E
2
n
=
0
\begin{align} &J_{1n}-J_{2n} = 0 \\ &E_{1n}-E_{2n} = 0 \end{align}
J1n−J2n=0E1n−E2n=0
物理意义:
恒定电流的两种导体的分界面处,电流密度的法向分量和电场强度的切向分量均连续。
三、能量(焦耳定律,热功率损耗)
宏观能量(焦耳定律):
Q
=
U
I
t
Q=UIt
Q=UIt
宏观功率(热功率):
P
=
U
I
,
P
=
I
2
R
,
P
=
U
2
R
,
R
=
ρ
l
S
P=UI, P=I^2R, P=\frac{U^2}{R}, R=\rho\frac{l}{S}
P=UI,P=I2R,P=RU2,R=ρSl
微观焦耳定律:
功率密度定义:单位体积的热功率。
p
=
lim
Δ
V
→
0
Δ
P
Δ
V
=
lim
Δ
V
→
0
Δ
U
Δ
I
Δ
V
=
lim
Δ
V
→
0
(
E
⃗
⋅
Δ
L
⃗
)
(
J
⃗
⋅
Δ
S
⃗
)
Δ
V
=
E
⃗
⋅
J
⃗
p=\lim_{\Delta V\to 0} \frac{\Delta P}{\Delta V} = \lim_{\Delta V\to 0} \frac{\Delta U \Delta I}{\Delta V} = \lim_{\Delta V\to 0} \frac{(\vec{E}\cdot \Delta \vec{L})(\vec{J}\cdot\Delta \vec{S})} {\Delta V} = \vec{E}\cdot\vec{J}
p=ΔV→0limΔVΔP=ΔV→0limΔVΔUΔI=ΔV→0limΔV(E⋅ΔL)(J⋅ΔS)=E⋅J
即
p
=
E
⃗
⋅
J
⃗
=
E
⃗
⋅
σ
E
⃗
=
σ
∣
E
⃗
∣
2
p = \vec{E}\cdot\vec{J} = \vec{E}\cdot\sigma\vec{E}=\sigma|\vec E|^2
p=E⋅J=E⋅σE=σ∣E∣2
四、静电场、静磁场、恒定电流的电场的比拟表
名称 | 静电场 | 静磁场 | 恒定电流电场 |
---|---|---|---|
散度 | ∇ ⋅ D ⃗ = ρ \nabla\cdot\vec{D}=\rho ∇⋅D=ρ | ∇ ⋅ B ⃗ = 0 \nabla\cdot\vec{B}=0 ∇⋅B=0 | ∇ ⋅ J ⃗ = 0 \nabla\cdot\vec{J}=0 ∇⋅J=0 |
旋度 | ∇ × E ⃗ = 0 ⃗ \nabla\times\vec{E}=\vec{0} ∇×E=0 | ∇ × H ⃗ = J ⃗ \nabla\times\vec{H}=\vec{J} ∇×H=J | ∇ × E ⃗ = 0 ⃗ \nabla\times\vec{E}=\vec{0} ∇×E=0 |
通量 | ∮ S D ⃗ ⋅ d S ⃗ = ∫ V ρ d V = Q \oint_S\vec{D}\cdot d\vec{S}=\int_V\rho dV=Q ∮SD⋅dS=∫VρdV=Q | ∮ S B ⃗ ⋅ d S ⃗ = 0 \oint_S\vec{B}\cdot d\vec{S}=0 ∮SB⋅dS=0 | ∮ S J ⃗ ⋅ d S ⃗ = 0 \oint_S\vec{J}\cdot d\vec{S}=0 ∮SJ⋅dS=0 |
环量 | ∮ l E ⃗ ⋅ d l ⃗ = 0 \oint_l\vec{E}\cdot d\vec{l}=0 ∮lE⋅dl=0 | ∮ l H ⃗ ⋅ d l ⃗ = ∫ S J ⃗ ⋅ d S ⃗ = I \oint_l\vec{H}\cdot d\vec{l}=\int_S\vec{J}\cdot d\vec S=I ∮lH⋅dl=∫SJ⋅dS=I | ∮ l E ⃗ ⋅ d l ⃗ = 0 \oint_l\vec{E}\cdot d\vec{l}=0 ∮lE⋅dl=0 |
法向边界条件 | n ⃗ ⋅ ( D ⃗ 1 − D ⃗ 2 ) = ρ S \vec{n}\cdot (\vec{D}_1-\vec{D}_2) = \rho_S n⋅(D1−D2)=ρS | n ⃗ ⋅ ( B ⃗ 1 − B ⃗ 2 ) = 0 \vec{n}\cdot (\vec{B}_1-\vec{B}_2) = 0 n⋅(B1−B2)=0 | n ⃗ ⋅ ( J ⃗ 1 − J ⃗ 2 ) = 0 \vec{n}\cdot (\vec{J}_1-\vec{J}_2) = 0 n⋅(J1−J2)=0 |
切向边界条件 | n ⃗ × ( E ⃗ 1 − E ⃗ 2 ) = 0 ⃗ \vec{n}\times(\vec{E}_1-\vec{E}_2) = \vec 0 n×(E1−E2)=0 | n ⃗ × ( H ⃗ 1 − H ⃗ 2 ) = J ⃗ S \vec{n}\times(\vec{H}_1-\vec{H}_2) = \vec{J}_S n×(H1−H2)=JS | n ⃗ × ( E ⃗ 1 − E ⃗ 2 ) = 0 ⃗ \vec{n}\times(\vec{E}_1-\vec{E}_2) = \vec 0 n×(E1−E2)=0 |
能量/功率密度 | w e = 1 2 E ⃗ ⋅ D ⃗ w_e=\frac{1}{2}\vec{E}\cdot\vec{D} we=21E⋅D | w m = 1 2 H ⃗ ⋅ B ⃗ w_m=\frac{1}{2}\vec{H}\cdot\vec{B} wm=21H⋅B | p = J ⃗ ⋅ E ⃗ p = \vec{J}\cdot\vec{E} p=J⋅E |
线性条件 | D ⃗ = ε E ⃗ \vec{D}=\varepsilon\vec{E} D=εE | B ⃗ = μ H ⃗ \vec{B}=\mu\vec{H} B=μH | J ⃗ = σ E ⃗ \vec{J}=\sigma\vec{E} J=σE |
能量/功率密度 | w e = 1 2 ε ∣ E ⃗ ∣ 2 w_e=\frac{1}{2}\varepsilon|\vec{E}|^2 we=21ε∣E∣2 | w m = 1 2 μ ∣ H ⃗ ∣ 2 w_m=\frac{1}{2}\mu|\vec{H}|^2 wm=21μ∣H∣2 | p = σ ∣ E ⃗ ∣ 2 p=\sigma|\vec{E}|^2 p=σ∣E∣2 |