3 传输线理论
文章目录
3.3 均匀传输线的阻抗与反射特性
上一节中,主要介绍了给定边界条件时,均匀传输线线上的传输特性;在实际过程中,我们可能需要将不同终端负载接入传输线,为了分析传输线在不同终端负载条件下的阻抗与反射特性,由此引入输入阻抗和反射系数这两个重要物理量。
3.3.1 输入阻抗
传输线上任一点
z
z
z 处复电压与复电流的比值定义为该点处的输入阻抗,记为
Z
i
n
(
z
)
Z_{in}(z)
Zin(z) ,即
Z
i
n
(
z
)
=
U
(
z
)
I
(
z
)
(
Ω
)
(3.49)
Z_{in}(z)=\frac{U(z)}{I(z)}\hspace{1em}(\Omega) \tag{3.49}
Zin(z)=I(z)U(z)(Ω)(3.49)
在上式中用
z
′
z'
z′ 替换
z
z
z(
z
′
=
l
−
z
z'=l-z
z′=l−z),并将有耗传输线的电压、电流的表达式(3.26)代入上式,则有耗传输线的输入阻抗为
Z
i
n
(
z
’
)
=
Z
0
Z
l
+
Z
0
tanh
γ
z
′
Z
0
+
Z
l
tanh
γ
z
′
(3.50)
Z_{in}(z’)=Z_0\frac{Z_l+Z_0\tanh\gamma z'}{Z_0+Z_l\tanh\gamma z'}\tag{3.50}
Zin(z’)=Z0Z0+Zltanhγz′Zl+Z0tanhγz′(3.50)
对无耗传输线
γ
=
j
β
\gamma=j\beta
γ=jβ,则其输入阻抗为
Z
i
n
(
z
′
)
=
Z
c
Z
l
+
j
Z
c
tan
β
z
′
Z
c
+
j
Z
l
tan
β
z
′
(3.51)
Z_{in}(z')=Z_c\frac{Z_l+jZ_c\tan\beta z'}{Z_c+jZ_l\tan\beta z'}\tag{3.51}
Zin(z′)=ZcZc+jZltanβz′Zl+jZctanβz′(3.51)
这表明,无耗传输线上观察点
z
′
z'
z′ 处的输入阻抗与观察点的位置、传输线的特性阻抗、负载阻抗和工作频率有关,且一般为复数。
3.3.2 反射系数
传输线上任一点
z
z
z 处的反射系数定义为,该点处的反射波电压(或电流)和入射波电压(或电流)的比值,记为
Γ
U
(
z
)
\Gamma_U(z)
ΓU(z) (或
Γ
I
(
z
)
\Gamma_I(z)
ΓI(z)),则
Γ
U
(
z
)
=
U
−
(
z
)
U
+
(
z
)
(3.52)
\Gamma_U(z)=\frac{U^-(z)}{U^+(z)}\tag{3.52}
ΓU(z)=U+(z)U−(z)(3.52)
或
Γ
I
(
z
)
=
I
−
(
z
)
I
+
(
z
)
(3.53)
\Gamma_I(z)=\frac{I^-(z)}{I^+(z)}\tag{3.53}
ΓI(z)=I+(z)I−(z)(3.53)
式中,
Γ
U
(
z
)
\Gamma_U(z)
ΓU(z) 称为电压反射系数,
Γ
I
(
z
)
\Gamma_I(z)
ΓI(z) 称为电流反射系数。且其之间的关系为
Γ
I
(
z
)
=
−
Γ
U
(
z
)
(3.54)
\Gamma_I(z)=-\Gamma_U(z)\tag{3.54}
ΓI(z)=−ΓU(z)(3.54)
由此说明电流反射系数与电压反射系数在数值上相等,相位相差
π
/
2
\pi/2
π/2 。实际应用中,因电压便于测量,故常用电压反射系数,并简称为反射系数,同时简记为
Γ
(
z
)
\Gamma(z)
Γ(z)。
对于无耗传输线,由式(3.52)可得线上
z
′
z'
z′ 处反射系数的表达式为
Γ
(
z
′
)
=
U
′
−
e
−
j
β
z
′
U
′
+
e
j
β
z
′
=
Γ
(
0
)
e
−
j
2
β
z
′
=
∣
Γ
(
l
)
∣
e
j
(
φ
l
−
2
β
z
′
)
(3.55)
\Gamma(z')=\frac{U'^-e^{-j\beta z'}}{U'^+e^{j\beta z'}}= \Gamma(0)e^{-j2\beta z'}=|\Gamma(l)|e^{j(\varphi_l-2\beta z')} \tag{3.55}
Γ(z′)=U′+ejβz′U′−e−jβz′=Γ(0)e−j2βz′=∣Γ(l)∣ej(φl−2βz′)(3.55)
式中,
Γ
(
0
)
=
∣
Γ
(
l
)
∣
e
j
φ
l
\Gamma(0)=|\Gamma(l)|e^{j\varphi_l}
Γ(0)=∣Γ(l)∣ejφl
其中,
Γ
l
=
Γ
(
0
)
\Gamma_l=\Gamma(0)
Γl=Γ(0) 是负载端的反射系数,
φ
l
\varphi_l
φl 是其辐角,它表示负载端反射波电压与入射波电压之间的相位差。
由此可见,反射系数为一个复数量。对于无耗传输线, Γ ( z ′ ) \Gamma(z') Γ(z′) 的模值大小沿线保持不变,而相位按 e − 2 j β z ′ e^{-2j\beta z'} e−2jβz′ 周期变化,周期为 λ / 2 \lambda /2 λ/2 。由于部分入射波被负载吸收,其余被负载反射,因此 ∣ Γ ( l ) ∣ ≤ 1 |\Gamma(l)|\le1 ∣Γ(l)∣≤1 。
类似于式(3.55),对有耗传输线有
Γ
(
z
′
)
=
U
′
−
e
−
j
γ
z
′
U
′
+
e
j
γ
z
′
=
Γ
(
0
)
e
−
j
2
γ
z
′
=
∣
Γ
(
l
)
∣
e
−
2
α
z
′
e
j
(
φ
l
−
2
β
z
′
)
(3.56)
\Gamma(z')=\frac{U'^-e^{-j\gamma z'}}{U'^+e^{j\gamma z'}}= \Gamma(0)e^{-j2\gamma z'}=|\Gamma(l)|e^{-2\alpha z'}e^{j(\varphi_l-2\beta z')} \tag{3.56}
Γ(z′)=U′+ejγz′U′−e−jγz′=Γ(0)e−j2γz′=∣Γ(l)∣e−2αz′ej(φl−2βz′)(3.56)
由此可见,随传输线上点
z
′
z'
z′ 远离负载,反射系数的幅值将按因子
e
−
2
α
z
′
e^{-2\alpha z'}
e−2αz′ 减小,而其相位则按
e
−
2
j
β
z
′
e^{-2j\beta z'}
e−2jβz′ 周期变化,周期为
λ
/
2
\lambda /2
λ/2 。
由式(3.55)和(3.56)可画出反射系数的幅相分布曲线。反射系数在图中对应点处将对位置 z ′ z' z′ 增加在图形上顺时针移动。
3.3.3 输入阻抗与反射系数间的关系
对有耗传输线,根据式(3.17)和(3.55),有
U
(
z
′
)
=
U
′
+
(
z
′
)
+
U
′
−
(
z
′
)
=
U
′
+
e
γ
z
′
(
1
+
Γ
l
e
−
2
γ
z
′
)
=
U
′
+
(
z
′
)
[
1
+
Γ
(
z
′
)
]
I
(
z
′
)
=
I
′
+
(
z
′
)
+
I
′
−
(
z
′
)
=
U
′
+
Z
0
e
γ
z
′
(
1
−
Γ
l
e
−
2
γ
z
′
)
=
I
′
+
(
z
′
)
[
1
−
Γ
(
z
′
)
]
(3.57)
\begin{align} U(z')&=U'^+(z')+U'^-(z')=U'^+e^{\gamma z'}(1+\Gamma_le^{-2\gamma z'})= U'^+(z')[1+\Gamma(z')] \\ I(z')&=I'^+(z')+I'^-(z')=\frac{U'^+}{Z_0}e^{\gamma z'}(1-\Gamma_le^{-2\gamma z'})= I'^+(z')[1-\Gamma(z')] \end{align}\tag{3.57}
U(z′)I(z′)=U′+(z′)+U′−(z′)=U′+eγz′(1+Γle−2γz′)=U′+(z′)[1+Γ(z′)]=I′+(z′)+I′−(z′)=Z0U′+eγz′(1−Γle−2γz′)=I′+(z′)[1−Γ(z′)](3.57)
Z i n ( z ′ ) = U ′ ( z ′ ) I ′ ( z ′ ) = Z 0 1 + Γ ( z ′ ) 1 − Γ ( z ′ ) = 简记为 Z 0 1 + Γ 1 − Γ (3.58a) Z_{in}(z')=\frac{U'(z')}{I'(z')}=Z_0\frac{1+\Gamma(z')}{1-\Gamma(z')} \xlongequal{简记为}Z_0\frac{1+\Gamma}{1-\Gamma} \tag{3.58a} Zin(z′)=I′(z′)U′(z′)=Z01−Γ(z′)1+Γ(z′)简记为Z01−Γ1+Γ(3.58a)
对于无耗传输线,则有
Z
i
n
(
z
′
)
=
Z
c
1
+
Γ
1
−
Γ
(3.58b)
Z_{in}(z')=Z_c\frac{1+\Gamma}{1-\Gamma} \tag{3.58b}
Zin(z′)=Zc1−Γ1+Γ(3.58b)
由(3.58)可知,传输线上任一点
z
′
z'
z′ 的输入阻抗与反射系数具有一一对应关系。
将
z
′
=
0
z'=0
z′=0(负载处)代入(3.58a),则得负载阻抗与终端反射系数之间的关系为
Z
l
=
Z
0
1
+
Γ
l
1
−
Γ
l
或
Γ
l
=
Z
l
−
Z
0
Z
l
+
Z
0
(3.59)
Z_l=Z_0\frac{1+\Gamma_l}{1-\Gamma_l}\hspace{2em} 或 \hspace{2em} \Gamma_l=\frac{Z_l-Z_0}{Z_l+Z_0} \tag{3.59}
Zl=Z01−Γl1+Γl或Γl=Zl+Z0Zl−Z0(3.59)
显然可以看出:
- 当 Z l = Z 0 Z_l=Z_0 Zl=Z0 时, Γ l = 0 \Gamma_l=0 Γl=0 ,负载端无反射,此时的负载称为匹配负载。
- 当 Z l = 0 Z_l=0 Zl=0 时(负载短路), Γ l = − 1 \Gamma_l=-1 Γl=−1 ,负载端发生全反射。
- 当 Z l = ∞ Z_l=\infty Zl=∞ 时(负载开路), Γ l = 1 \Gamma_l=1 Γl=1 ,负载端发生全反射。
3.3.4 无耗传输线上导波的多重反射
(…)
3.4 均匀无耗传输线终端接不同负载时的工作状态
对于均匀无耗传输线接不同负载时的三种工作状态,主要区别在于入射波和反射波的状态。
- 行波工作状态( Γ l = 0 \Gamma_l=0 Γl=0);
- 纯驻波工作状态( ∣ Γ l ∣ = 1 |\Gamma_l|=1 ∣Γl∣=1);
- 行驻波工作状态($0<|\Gamma_l| <1 $);
3.4.1 行波工作状态
行波工作状态又称为无反射工作状态。由式(3.59)和(3.55)两式可知,当无耗传输线的负载阻抗等于传输线的特性阻抗或传输线半无限长,即 Z l = Z c Z_l=Z_c Zl=Zc 时, Γ ( z ′ ) = 0 \Gamma(z')=0 Γ(z′)=0 ,线上只有电压入射波和电流入射波,传输线工作于行波状态,此时负载称为负载匹配。
3.4.2 纯驻波工作状态
纯驻波工作状态又称为全反射工作状态。由式(3.59)和(3.55)两式可知,当传输线终端短路时, Z l = 0 , Γ l = − 1 , ∣ Γ ( z ′ ) ∣ = 1 Z_l=0,\Gamma_l=-1,|\Gamma(z')|=1 Zl=0,Γl=−1,∣Γ(z′)∣=1 ;当传输线终端开路时, Z l = ∞ , Γ l = 1 , ∣ Γ ( z ′ ) ∣ = 1 Z_l=\infty,\Gamma_l=1,|\Gamma(z')|=1 Zl=∞,Γl=1,∣Γ(z′)∣=1 ;当传输线接电抗性负载时, Z l = ± j X l , ∣ Γ ( z ′ ) ∣ = 1 Z_l=\pm jX_l,|\Gamma(z')|=1 Zl=±jXl,∣Γ(z′)∣=1 。在上述三种情况中,传输线终端的入射波均被全部反射,沿线入射波与反射波叠加形成纯驻波分布。下面主要讨论终端短路的情况。
1 终端短路
无耗传输线的终端短路时,
Z
l
=
0
,
Γ
l
=
−
1
,
Γ
(
z
′
)
=
−
e
−
j
2
β
z
′
Z_l=0,\Gamma_l=-1,\Gamma(z')=-e^{-j2\beta z'}
Zl=0,Γl=−1,Γ(z′)=−e−j2βz′ 。于是由式(3.57)可得传输线上的电压、电流分布为
U
(
z
′
)
=
U
′
+
e
j
β
z
′
(
1
−
e
−
j
2
β
z
′
)
=
2
j
U
′
+
sin
β
z
′
I
(
z
′
)
=
U
′
+
Z
c
e
j
β
z
′
(
1
+
e
−
j
2
β
z
′
)
=
2
U
′
+
Z
c
cos
β
z
′
(3.69)
\begin{align} U(z')&=U'^+e^{j\beta z'}(1- e^{-j2\beta z'})= 2jU'^+ \sin\beta z' \\ I(z')&=\frac{U'^+}{Z_c}e^{j\beta z'}(1+e^{-j2\beta z'})= 2\frac{U'^+}{Z_c} \cos\beta z' \end{align}\tag{3.69}
U(z′)I(z′)=U′+ejβz′(1−e−j2βz′)=2jU′+sinβz′=ZcU′+ejβz′(1+e−j2βz′)=2ZcU′+cosβz′(3.69)
上式的瞬时表达式为
u
(
z
′
,
t
)
=
2
∣
U
′
+
∣
sin
β
z
′
cos
(
ω
t
+
φ
+
′
+
π
2
)
i
(
z
′
,
t
)
=
2
∣
U
′
+
∣
Z
c
cos
β
z
′
(
ω
t
+
φ
+
′
)
(3.70)
\begin{align} u(z',t)&=2|U'^+| \sin\beta z'\cos\big(\omega t+\varphi_+'+\frac{\pi}{2}\big)\\ i(z',t)&=2\frac{|U'^+|}{Z_c}\cos\beta z'\big(\omega t+\varphi_+'\big) \end{align}\tag{3.70}
u(z′,t)i(z′,t)=2∣U′+∣sinβz′cos(ωt+φ+′+2π)=2Zc∣U′+∣cosβz′(ωt+φ+′)(3.70)
显然,沿线各点电压、电流均随时间作余弦变化,相位相差
π
/
2
\pi/2
π/2 ;沿线各点电压、电流的振幅分别按正弦和余弦分布,在
z
′
=
n
π
/
β
=
n
λ
/
2
(
n
=
0
,
1
,
2
,
⋯
)
z'=n\pi/\beta=n\lambda/2(n=0,1,2,\cdots)
z′=nπ/β=nλ/2(n=0,1,2,⋯) 处电压振幅值为零,电流振幅达极大值,且等于
2
∣
U
′
+
∣
/
Z
c
2|U'^+|/Z_c
2∣U′+∣/Zc , 此时称这些位置为电压波节点(电流波腹点) 。在
z
′
=
(
2
n
+
1
)
λ
/
4
(
n
=
0
,
1
,
2
,
⋯
)
z'=(2n+1)\lambda/4(n=0,1,2,\cdots)
z′=(2n+1)λ/4(n=0,1,2,⋯) 处电压振幅值达极大值,电流振幅达为零,且等于
2
∣
U
′
+
∣
/
Z
c
2|U'^+|/Z_c
2∣U′+∣/Zc , 此时称这些位置为电压波腹点(电流波节点)。
图3.10(a)是电压、电流的振幅分布图。由此可见,电压、电流的时间、空间相位各相差 π / 2 \pi/2 π/2 ,这表明在波所携带的电磁能量中,当电场能量达到极大值时磁场能量为零,当磁场能量达到极大值时电场能量为零,即波所携带的电磁能量相互转换,形成电磁振荡而不携带能量沿线传播。
由式(3.69)可得无耗短路传输线得输入阻抗为
Z
i
n
(
z
′
)
=
j
Z
c
tan
β
z
′
(3.71)
Z_{in}(z')=jZ_c\tan\beta z' \tag{3.71}
Zin(z′)=jZctanβz′(3.71)
输入阻抗沿线分布如图3.10(b)所示。从图中可知,无耗短路传输线的输入阻抗为一纯电抗,电抗随频率和长度而变化。
- 在 z ′ = n λ / 2 ( n = 0 , 1 , 2 , ⋯ ) z'=n\lambda/2(n=0,1,2,\cdots) z′=nλ/2(n=0,1,2,⋯) 处, Z i n ( z ′ ) = 0 Z_{in}(z')=0 Zin(z′)=0,相当于串联谐振;
- 在 z ′ = ( 2 n + 1 ) λ / 4 ( n = 0 , 1 , 2 , ⋯ ) z'=(2n+1)\lambda/4(n=0,1,2,\cdots) z′=(2n+1)λ/4(n=0,1,2,⋯) 处, Z i n ( z ′ ) → ∞ Z_{in}(z')\to\infty Zin(z′)→∞,相当于并联谐振;
- 在 0 < z ′ < λ / 4 0<z'<\lambda/4 0<z′<λ/4 处, Z i n ( z ′ ) = j X Z_{in}(z')=jX Zin(z′)=jX,相当于纯电感;
- 在 λ / 4 < z ′ < λ / 2 \lambda/4<z'<\lambda/2 λ/4<z′<λ/2 处, Z i n ( z ′ ) = − j X Z_{in}(z')=-jX Zin(z′)=−jX,相当于纯电容;
此外,如图所示,从短路终端算起,每隔 λ / 4 \lambda/4 λ/4 长度,阻抗的性质就改变一次,此特性称为传输线的 λ / 4 \lambda/4 λ/4 阻抗变换性;每隔 λ / 2 \lambda/2 λ/2 长度,阻抗将重复一次,此特性称为传输线的 λ / 2 \lambda/2 λ/2 阻抗重复性。
在射频/微波技术中,利用无耗短路线的这两个特性可以设计出不同用途的元件。
2 终端开路
无耗传输线的终端开路时,
Z
l
=
∞
,
Γ
l
=
1
,
Γ
(
z
′
)
=
e
−
j
2
β
z
′
Z_l=\infty,\Gamma_l=1,\Gamma(z')=e^{-j2\beta z'}
Zl=∞,Γl=1,Γ(z′)=e−j2βz′ 。于是由式(3.57)可得传输线上的电压、电流分布为
U
(
z
′
)
=
U
′
+
e
j
β
z
′
(
1
+
e
−
j
2
β
z
′
)
=
2
U
′
+
cos
β
z
′
I
(
z
′
)
=
U
′
+
Z
c
e
j
β
z
′
(
1
−
e
−
j
2
β
z
′
)
=
2
j
U
′
+
Z
c
sin
β
z
′
(3.72)
\begin{align} U(z')&=U'^+e^{j\beta z'}(1+ e^{-j2\beta z'})= 2U'^+ \cos\beta z' \\ I(z')&=\frac{U'^+}{Z_c}e^{j\beta z'}(1-e^{-j2\beta z'})= 2j\frac{U'^+}{Z_c} \sin\beta z' \end{align}\tag{3.72}
U(z′)I(z′)=U′+ejβz′(1+e−j2βz′)=2U′+cosβz′=ZcU′+ejβz′(1−e−j2βz′)=2jZcU′+sinβz′(3.72)
则传输线上
z
′
z'
z′ 点的输入阻抗为
Z
i
n
(
z
′
)
=
−
j
Z
c
cot
β
z
′
(3.73)
Z_{in}(z')=-jZ_c\cot\beta z' \tag{3.73}
Zin(z′)=−jZccotβz′(3.73)
由此易得,无耗终端开路传输线的驻波特性应与无耗短路传输线类似,只需将无耗短路传输线驻波特性曲线向波源方向平移
λ
/
4
\lambda/4
λ/4 长度可得。这是因为传输线具有
λ
/
4
\lambda/4
λ/4 阻抗变换特性。
同理,当传输线终端接电抗性负载时,其驻波特性也可由无耗短路传输线平移一定长度得到。
3.4.3 行驻波工作状态
行驻波工作状态又称为部分反射工作状态。当传输线终端接任意复阻抗
Z
l
=
R
l
±
j
X
l
Z_l=R_l\pm jX_l
Zl=Rl±jXl 时,其终端反射系数为
Γ
l
=
Z
l
−
Z
c
Z
l
+
Z
c
=
(
R
l
−
Z
c
)
±
j
X
l
(
R
l
+
Z
c
)
±
j
X
l
=
R
l
2
−
Z
c
2
+
X
l
2
(
R
l
+
Z
c
)
2
+
X
l
2
±
j
2
X
l
Z
c
(
R
l
+
Z
c
)
2
+
X
l
2
=
∣
Γ
l
∣
e
±
j
φ
l
(3.74)
\Gamma_l=\frac{Z_l-Z_c}{Z_l+Z_c}=\frac{(R_l-Z_c)\pm jX_l}{(R_l+Z_c)\pm jX_l}= \frac{R_l^2-Z_c^2+X_l^2}{(R_l+Z_c)^2+ X_l^2}\pm j\frac{2X_lZ_c}{(R_l+Z_c)^2+ X_l^2}=|\Gamma_l|e^{\pm j\varphi_l} \tag{3.74}
Γl=Zl+ZcZl−Zc=(Rl+Zc)±jXl(Rl−Zc)±jXl=(Rl+Zc)2+Xl2Rl2−Zc2+Xl2±j(Rl+Zc)2+Xl22XlZc=∣Γl∣e±jφl(3.74)
式中,
∣
Γ
l
∣
=
(
R
l
−
Z
c
)
2
+
X
l
2
(
R
l
+
Z
c
)
2
+
X
l
2
(3.75a)
|\Gamma_l|=\sqrt{\frac{(R_l-Z_c)^2+ X_l^2}{(R_l+Z_c)^2+ X_l^2}} \tag{3.75a}
∣Γl∣=(Rl+Zc)2+Xl2(Rl−Zc)2+Xl2(3.75a)
φ l = arctan ( 2 X l Z c R l 2 − Z c 2 + X l 2 ) (3.75b) \varphi_l=\arctan(\frac{2X_lZ_c}{R_l^2-Z_c^2+X_l^2}) \tag{3.75b} φl=arctan(Rl2−Zc2+Xl22XlZc)(3.75b)
由式(3.75a)可知,
∣
Γ
l
∣
<
1
|\Gamma_l|<1
∣Γl∣<1,这表明负载端发生部分反射,此时传输线工作与行驻波工作状态。传输线上电压、电流的表达式为
U
(
z
′
)
=
U
′
+
e
j
β
z
′
+
U
′
+
Γ
l
e
−
j
β
z
′
I
(
z
′
)
=
U
′
+
Z
c
e
j
β
z
′
−
U
′
+
Z
c
Γ
l
e
−
j
β
z
′
(3.76)
\begin{align} U(z')&=U'^+e^{j\beta z'}+U'^+\Gamma_le^{-j\beta z'}\\ I(z')&=\frac{U'^+}{Z_c}e^{j\beta z'}-\frac{U'^+}{Z_c}\Gamma_le^{-j\beta z'} \end{align}\tag{3.76}
U(z′)I(z′)=U′+ejβz′+U′+Γle−jβz′=ZcU′+ejβz′−ZcU′+Γle−jβz′(3.76)
于是,电压、电流模值分别为
∣
U
(
z
′
)
∣
=
∣
U
′
+
∣
[
1
+
∣
Γ
l
∣
2
+
2
∣
Γ
l
∣
cos
(
2
β
z
′
−
φ
l
)
]
1
/
2
∣
I
(
z
′
)
∣
=
∣
U
′
+
∣
Z
c
[
1
+
∣
Γ
l
∣
2
−
2
∣
Γ
l
∣
cos
(
2
β
z
′
−
φ
l
)
]
1
/
2
(3.77)
\begin{align} |U(z')|&=|U'^+|\big[1+|\Gamma_l|^2+2|\Gamma_l|\cos(2\beta z'-\varphi_l)\big]^{1/2}\\ |I(z')|&=\frac{|U'^+|}{Z_c}\big[1+|\Gamma_l|^2- 2|\Gamma_l|\cos(2\beta z'-\varphi_l)\big]^{1/2} \end{align}\tag{3.77}
∣U(z′)∣∣I(z′)∣=∣U′+∣[1+∣Γl∣2+2∣Γl∣cos(2βz′−φl)]1/2=Zc∣U′+∣[1+∣Γl∣2−2∣Γl∣cos(2βz′−φl)]1/2(3.77)
为方便对行驻波工作状态下传输线上电压、电流的振幅分布和输入阻抗特性进行分析,计算求出电压波腹、波节(或电流波节、波腹)点的位置以及电压、电流在波腹和波节点处的大小。
1 波腹和波节处电压、电流的大小
当式(3.77)中
cos
(
2
β
z
′
−
φ
l
)
=
1
\cos(2\beta z'-\varphi_l)=1
cos(2βz′−φl)=1 时,此时对应电压波腹点、电流波节点;当式(3.77)中
cos
(
2
β
z
′
−
φ
l
)
=
−
1
\cos(2\beta z'-\varphi_l)=-1
cos(2βz′−φl)=−1 时,此时对应电压波节点、电流波腹点;此时可得电压(振幅)极大值、极小值和电流(振幅)极大值、极小值为:
∣
U
∣
max
=
∣
U
′
+
∣
(
1
+
∣
Γ
l
∣
)
,
∣
U
∣
min
=
∣
U
′
+
∣
(
1
−
∣
Γ
l
∣
)
(3.78a)
|U|_\text{max}=|U'^+|(1+|\Gamma_l|),\hspace{2em}|U|_\text{min}=|U'^+|(1-|\Gamma_l|)\\ \tag{3.78a}
∣U∣max=∣U′+∣(1+∣Γl∣),∣U∣min=∣U′+∣(1−∣Γl∣)(3.78a)
∣ I ∣ max = ∣ U ′ + ∣ Z c ( 1 + ∣ Γ l ∣ ) , ∣ I ∣ min = ∣ U ′ + ∣ Z c ( 1 − ∣ Γ l ∣ ) (3.78b) |I|_\text{max}=\frac{|U'^+|}{Z_c}(1+|\Gamma_l|),\hspace{2em} |I|_\text{min}=\frac{|U'^+|}{Z_c}(1-|\Gamma_l|)\\ \tag{3.78b} ∣I∣max=Zc∣U′+∣(1+∣Γl∣),∣I∣min=Zc∣U′+∣(1−∣Γl∣)(3.78b)
由此可见,当终端为复阻抗时,传输线上电压、电流值将小于入射波振幅的 2 倍,极小值也不为零。
2 波腹点和波节点的位置
由(3.77)可知,当
2
β
z
′
−
φ
l
=
2
n
π
(
n
=
0
,
1
,
2
,
⋯
)
2\beta z'-\varphi_l=2n\pi(n=0,1,2,\cdots)
2βz′−φl=2nπ(n=0,1,2,⋯) 时,电压振幅达到极大值,电流振幅达到极小值,由此可得电压波腹点、电流波节点的位置为
z
max
′
=
2
n
π
+
φ
l
2
β
=
λ
φ
l
4
π
+
n
λ
2
(
n
=
0
,
1
,
2
,
⋯
)
(3.79)
z'_\text{max}=\frac{2n\pi+\varphi_l}{2\beta}= \frac{\lambda\varphi_l}{4\pi}+n\frac{\lambda}{2}\hspace{2em}(n=0,1,2,\cdots) \tag{3.79}
zmax′=2β2nπ+φl=4πλφl+n2λ(n=0,1,2,⋯)(3.79)
距终端出现的第一个电压波腹点的位置为
z
max1
′
=
λ
4
π
φ
l
(3.80)
z'_\text{max1}=\frac{\lambda}{4\pi}\varphi_l \tag{3.80}
zmax1′=4πλφl(3.80)
由(3.77)可知,当
2
β
z
′
−
φ
l
=
(
2
n
±
1
)
π
(
n
=
0
,
1
,
2
,
⋯
)
2\beta z'-\varphi_l=(2n\pm1)\pi(n=0,1,2,\cdots)
2βz′−φl=(2n±1)π(n=0,1,2,⋯) 时,电压振幅达到极大值,电流振幅达到极小值,由此可得电压波腹点、电流波节点的位置为
z
min
′
=
(
2
n
±
1
)
π
+
φ
l
2
β
=
λ
φ
l
4
π
+
(
2
n
±
1
)
λ
4
(
n
=
0
,
1
,
2
,
⋯
)
(3.81)
z'_\text{min}=\frac{(2n\pm1)\pi+\varphi_l}{2\beta}= \frac{\lambda\varphi_l}{4\pi}+(2n\pm1)\frac{\lambda}{4}\hspace{2em}(n=0,1,2,\cdots) \tag{3.81}
zmin′=2β(2n±1)π+φl=4πλφl+(2n±1)4λ(n=0,1,2,⋯)(3.81)
式中,
−
-
− 对应终端接容性负载,而
+
+
+ 对应终端接感性负载。显然,距终端出现的第一个电压波节点的位置为
z
min1
′
=
λ
φ
l
4
π
±
λ
4
=
z
max1
′
±
λ
4
(3.82)
z'_\text{min1}=\frac{\lambda\varphi_l}{4\pi}\pm\frac{\lambda}{4}= z'_\text{max1}\pm\frac{\lambda}{4}\tag{3.82}
zmin1′=4πλφl±4λ=zmax1′±4λ(3.82)
由以上各式可见,电压和电流的波腹、波节点位置取决于 φ l \varphi_l φl,即取决于负载阻抗的性质。下面分别讨论终端接四种不同负载阻抗时电压、电流振幅的分布情况。
1) Z l = R l < Z c Z_l=R_l<Z_c Zl=Rl<Zc (终端接小电阻)
由(3.74)和(3.80)两式可知,此时 φ l = π , z max1 ′ = λ 4 , z min ′ = 0 \varphi_l=\pi,z'_\text{max1}=\frac{\lambda}{4},z'_\text{min}=0 φl=π,zmax1′=4λ,zmin′=0 。这表明,当终端接小于特性阻抗的纯电阻性负载时,终端处为电压波节点、电流波腹点。此时电压、电流振幅分布如图3.12(a)所示。
2) Z l = R l > Z c Z_l=R_l>Z_c Zl=Rl>Zc (终端接大电阻)
由(3.74)和(3.80)两式可知,此时 φ l = 0 , z max1 ′ = 0 , z min ′ = λ 4 \varphi_l=0,z'_\text{max1}=0,z'_\text{min}=\frac{\lambda}{4} φl=0,zmax1′=0,zmin′=4λ 。这表明,当终端接大于特性阻抗的纯电阻性负载时,终端处为电压波腹点、电流波节点。此时电压、电流振幅分布如图3.12(b)所示。
3) Z l = R l + j X l Z_l=R_l+jX_l Zl=Rl+jXl (终端接感性负载)
由(3.74)和(3.80)两式可知,此时 0 < φ l < π , 0 < z max1 ′ < λ / 4 0<\varphi_l<\pi,0<z'_\text{max1}<\lambda/4 0<φl<π,0<zmax1′<λ/4 。这表明,当终端接感性负载,离开终端的第一个出现的是电压波腹点、电流波节点。此时电压、电流振幅分布如图3.12(v)所示。
4) Z l = R l − j X l Z_l=R_l-jX_l Zl=Rl−jXl (终端接容性负载)
由(3.74)和(3.80)两式可知,此时 π < φ l < 2 π , λ / 4 < z max1 ′ < λ / 2 \pi<\varphi_l<2\pi,\lambda/4<z'_\text{max1}<\lambda/2 π<φl<2π,λ/4<zmax1′<λ/2 。这表明,当终端接容性负载时,终端处为电压波节点、电流波腹点。此时电压、电流振幅分布如图3.12(d)所示。
3 驻波系数
为描述传输线上驻波大小,引入电压驻波系数(或称电压驻波比(VSWR))。定义为传输线上波腹点电压与波节点电压之比,记为
ρ
\rho
ρ ,即
ρ
=
∣
U
∣
max
∣
U
∣
min
(3.83)
\rho=\frac{|U|_\text{max}}{|U|_\text{min}}\tag{3.83}
ρ=∣U∣min∣U∣max(3.83)
电压驻波比与反射系数均反应传输线上的反射情况,只不过出发点不同,因此电压驻波比与发射系数一一对应:
ρ
=
1
+
∣
Γ
l
∣
1
−
∣
Γ
l
∣
或
∣
Γ
l
∣
=
ρ
−
1
ρ
+
1
(3.84)
\rho=\frac{1+|\Gamma_l|}{1-|\Gamma_l|}\hspace{1em}或\hspace{1em} |\Gamma_l|=\frac{\rho-1}{\rho+1}\tag{3.84}
ρ=1−∣Γl∣1+∣Γl∣或∣Γl∣=ρ+1ρ−1(3.84)
由此可见:
- 当 Z l = Z c Z_l=Z_c Zl=Zc 时, ∣ Γ l ∣ = 0 , ρ = 1 |\Gamma_l|=0,\rho=1 ∣Γl∣=0,ρ=1 ,线上载行波;
- 当 Z l = 0 , ∞ 或 ± j X l Z_l=0,\infty或\pm jX_l Zl=0,∞或±jXl 时, ∣ Γ l ∣ = 1 , ρ = ∞ |\Gamma_l|=1,\rho=\infty ∣Γl∣=1,ρ=∞ ,线上载纯驻波;
- 当 $Z_l=R_l\pm jX_l $ 时, 0 < ∣ Γ l ∣ < 1 , 1 < ρ < ∞ 0<|\Gamma_l|<1,1<\rho<\infty 0<∣Γl∣<1,1<ρ<∞ ,线上载行驻波;
4 阻抗特性
当终端接任意复阻抗时,无耗传输线上任一点处的输入阻抗由式(3.51)可得
Z
i
n
(
z
′
)
=
Z
c
Z
l
+
j
Z
c
tan
β
z
′
Z
c
+
j
Z
l
tan
β
z
′
=
R
+
j
X
(3.88)
Z_{in}(z')=Z_c\frac{Z_l+jZ_c\tan\beta z'}{Z_c+jZ_l\tan\beta z'}= R+jX \tag{3.88}
Zin(z′)=ZcZc+jZltanβz′Zl+jZctanβz′=R+jX(3.88)
将
Z
l
=
R
l
±
j
X
l
Z_l=R_l\pm jX_l
Zl=Rl±jXl ,代入,并将实、虚部分开,得
R
=
Z
c
2
R
l
sec
2
β
z
′
(
Z
c
∓
X
l
tan
β
z
′
)
2
+
(
R
l
tan
β
z
′
)
2
X
=
Z
c
±
(
Z
c
∓
X
l
tan
β
z
′
)
(
X
l
±
Z
c
tan
β
z
′
)
−
R
l
2
tan
β
z
′
(
Z
c
∓
X
l
tan
β
z
′
)
2
+
(
R
l
tan
β
z
′
)
2
(3.89)
\begin{align} R&=Z_c^2R_l\frac{\sec^2\beta z'}{(Z_c\mp X_l\tan\beta z')^2+(R_l\tan\beta z')^2}\\\\ X&=Z_c\frac{\pm(Z_c\mp X_l\tan\beta z')(X_l\pm Z_c\tan\beta z')-R_l^2\tan\beta z'} {(Z_c\mp X_l\tan\beta z')^2+(R_l\tan\beta z')^2} \end{align}\tag{3.89}
RX=Zc2Rl(Zc∓Xltanβz′)2+(Rltanβz′)2sec2βz′=Zc(Zc∓Xltanβz′)2+(Rltanβz′)2±(Zc∓Xltanβz′)(Xl±Zctanβz′)−Rl2tanβz′(3.89)
由此可得终端接任意复阻抗时沿线得阻抗分布曲线。如图3.13 所示。
如图所示,每隔 λ / 4 \lambda/4 λ/4 长度,阻抗的性质就改变一次,此特性称为传输线的 λ / 4 \lambda/4 λ/4 阻抗变换性;每隔 λ / 2 \lambda/2 λ/2 长度,阻抗将重复一次,此特性称为传输线的 λ / 2 \lambda/2 λ/2 阻抗重复性;在波腹、波节点处,阻抗呈纯阻性。
在电压波腹点处,阻抗出现极大值(相当于并联谐振),其值为
Z
max
=
R
max
=
∣
U
∣
max
∣
I
∣
min
=
Z
c
1
+
∣
Γ
l
∣
1
−
∣
Γ
l
∣
=
Z
c
ρ
(3.90)
Z_\text{max}=R_\text{max}=\frac{|U|_\text{max}}{|I|_\text{min}}= Z_c\frac{1+|\Gamma_l|}{1-|\Gamma_l|}=Z_c\rho\tag{3.90}
Zmax=Rmax=∣I∣min∣U∣max=Zc1−∣Γl∣1+∣Γl∣=Zcρ(3.90)
在电压波节点处,阻抗出现极小值(相当于串联谐振),其值为
Z
min
=
R
min
=
∣
U
∣
min
∣
I
∣
max
=
Z
c
1
−
∣
Γ
l
∣
1
+
∣
Γ
l
∣
=
Z
c
ρ
(3.90)
Z_\text{min}=R_\text{min}=\frac{|U|_\text{min}}{|I|_\text{max}}= Z_c\frac{1-|\Gamma_l|}{1+|\Gamma_l|}=\frac{Z_c}{\rho}\tag{3.90}
Zmin=Rmin=∣I∣max∣U∣min=Zc1+∣Γl∣1−∣Γl∣=ρZc(3.90)