第三章.传输线理论(2)

3 传输线理论

3.3 均匀传输线的阻抗与反射特性

上一节中,主要介绍了给定边界条件时,均匀传输线线上的传输特性;在实际过程中,我们可能需要将不同终端负载接入传输线,为了分析传输线在不同终端负载条件下的阻抗与反射特性,由此引入输入阻抗反射系数这两个重要物理量。

3.3.1 输入阻抗

传输线上任一点 z z z复电压与复电流的比值定义为该点处的输入阻抗,记为 Z i n ( z ) Z_{in}(z) Zin(z) ,即
Z i n ( z ) = U ( z ) I ( z ) ( Ω ) (3.49) Z_{in}(z)=\frac{U(z)}{I(z)}\hspace{1em}(\Omega) \tag{3.49} Zin(z)=I(z)U(z)(Ω)(3.49)
在上式中用 z ′ z' z 替换 z z z z ′ = l − z z'=l-z z=lz),并将有耗传输线的电压、电流的表达式(3.26)代入上式,则有耗传输线输入阻抗
Z i n ( z ’ ) = Z 0 Z l + Z 0 tanh ⁡ γ z ′ Z 0 + Z l tanh ⁡ γ z ′ (3.50) Z_{in}(z’)=Z_0\frac{Z_l+Z_0\tanh\gamma z'}{Z_0+Z_l\tanh\gamma z'}\tag{3.50} Zin(z)=Z0Z0+ZltanhγzZl+Z0tanhγz(3.50)
对无耗传输线 γ = j β \gamma=j\beta γ=jβ,则其输入阻抗为
Z i n ( z ′ ) = Z c Z l + j Z c tan ⁡ β z ′ Z c + j Z l tan ⁡ β z ′ (3.51) Z_{in}(z')=Z_c\frac{Z_l+jZ_c\tan\beta z'}{Z_c+jZ_l\tan\beta z'}\tag{3.51} Zin(z)=ZcZc+jZltanβzZl+jZctanβz(3.51)
这表明,无耗传输线上观察点 z ′ z' z 处的输入阻抗与观察点的位置、传输线的特性阻抗、负载阻抗和工作频率有关,且一般为复数。

3.3.2 反射系数

传输线上任一点 z z z 处的反射系数定义为,该点处的反射波电压(或电流)和入射波电压(或电流)的比值,记为 Γ U ( z ) \Gamma_U(z) ΓU(z) (或 Γ I ( z ) \Gamma_I(z) ΓI(z)),则
Γ U ( z ) = U − ( z ) U + ( z ) (3.52) \Gamma_U(z)=\frac{U^-(z)}{U^+(z)}\tag{3.52} ΓU(z)=U+(z)U(z)(3.52)

Γ I ( z ) = I − ( z ) I + ( z ) (3.53) \Gamma_I(z)=\frac{I^-(z)}{I^+(z)}\tag{3.53} ΓI(z)=I+(z)I(z)(3.53)
式中, Γ U ( z ) \Gamma_U(z) ΓU(z) 称为电压反射系数 Γ I ( z ) \Gamma_I(z) ΓI(z) 称为电流反射系数。且其之间的关系为
Γ I ( z ) = − Γ U ( z ) (3.54) \Gamma_I(z)=-\Gamma_U(z)\tag{3.54} ΓI(z)=ΓU(z)(3.54)
由此说明电流反射系数与电压反射系数在数值上相等,相位相差 π / 2 \pi/2 π/2 。实际应用中,因电压便于测量,故常用电压反射系数,并简称为反射系数,同时简记为 Γ ( z ) \Gamma(z) Γ(z)

对于无耗传输线,由式(3.52)可得线上 z ′ z' z 处反射系数的表达式为
Γ ( z ′ ) = U ′ − e − j β z ′ U ′ + e j β z ′ = Γ ( 0 ) e − j 2 β z ′ = ∣ Γ ( l ) ∣ e j ( φ l − 2 β z ′ ) (3.55) \Gamma(z')=\frac{U'^-e^{-j\beta z'}}{U'^+e^{j\beta z'}}= \Gamma(0)e^{-j2\beta z'}=|\Gamma(l)|e^{j(\varphi_l-2\beta z')} \tag{3.55} Γ(z)=U+ejβzUejβz=Γ(0)ej2βz=∣Γ(l)ej(φl2βz)(3.55)
式中,
Γ ( 0 ) = ∣ Γ ( l ) ∣ e j φ l \Gamma(0)=|\Gamma(l)|e^{j\varphi_l} Γ(0)=∣Γ(l)ejφl
其中, Γ l = Γ ( 0 ) \Gamma_l=\Gamma(0) Γl=Γ(0)负载端的反射系数, φ l \varphi_l φl 是其辐角,它表示负载端反射波电压与入射波电压之间的相位差

由此可见,反射系数为一个复数量。对于无耗传输线, Γ ( z ′ ) \Gamma(z') Γ(z) 的模值大小沿线保持不变,而相位按 e − 2 j β z ′ e^{-2j\beta z'} e2jβz 周期变化,周期为 λ / 2 \lambda /2 λ/2 。由于部分入射波被负载吸收,其余被负载反射,因此 ∣ Γ ( l ) ∣ ≤ 1 |\Gamma(l)|\le1 ∣Γ(l)1

类似于式(3.55),对有耗传输线有
Γ ( z ′ ) = U ′ − e − j γ z ′ U ′ + e j γ z ′ = Γ ( 0 ) e − j 2 γ z ′ = ∣ Γ ( l ) ∣ e − 2 α z ′ e j ( φ l − 2 β z ′ ) (3.56) \Gamma(z')=\frac{U'^-e^{-j\gamma z'}}{U'^+e^{j\gamma z'}}= \Gamma(0)e^{-j2\gamma z'}=|\Gamma(l)|e^{-2\alpha z'}e^{j(\varphi_l-2\beta z')} \tag{3.56} Γ(z)=U+ezUez=Γ(0)ej2γz=∣Γ(l)e2αzej(φl2βz)(3.56)
由此可见,随传输线上点 z ′ z' z 远离负载,反射系数的幅值将按因子 e − 2 α z ′ e^{-2\alpha z'} e2αz 减小,而其相位则按 e − 2 j β z ′ e^{-2j\beta z'} e2jβz 周期变化,周期为 λ / 2 \lambda /2 λ/2

由式(3.55)和(3.56)可画出反射系数的幅相分布曲线。反射系数在图中对应点处将对位置 z ′ z' z 增加在图形上顺时针移动。

image-20230829092403095

3.3.3 输入阻抗与反射系数间的关系

对有耗传输线,根据式(3.17)和(3.55),有
U ( z ′ ) = U ′ + ( z ′ ) + U ′ − ( z ′ ) = U ′ + e γ z ′ ( 1 + Γ l e − 2 γ z ′ ) = U ′ + ( z ′ ) [ 1 + Γ ( z ′ ) ] I ( z ′ ) = I ′ + ( z ′ ) + I ′ − ( z ′ ) = U ′ + Z 0 e γ z ′ ( 1 − Γ l e − 2 γ z ′ ) = I ′ + ( z ′ ) [ 1 − Γ ( z ′ ) ] (3.57) \begin{align} U(z')&=U'^+(z')+U'^-(z')=U'^+e^{\gamma z'}(1+\Gamma_le^{-2\gamma z'})= U'^+(z')[1+\Gamma(z')] \\ I(z')&=I'^+(z')+I'^-(z')=\frac{U'^+}{Z_0}e^{\gamma z'}(1-\Gamma_le^{-2\gamma z'})= I'^+(z')[1-\Gamma(z')] \end{align}\tag{3.57} U(z)I(z)=U+(z)+U(z)=U+eγz(1+Γle2γz)=U+(z)[1+Γ(z)]=I+(z)+I(z)=Z0U+eγz(1Γle2γz)=I+(z)[1Γ(z)](3.57)

Z i n ( z ′ ) = U ′ ( z ′ ) I ′ ( z ′ ) = Z 0 1 + Γ ( z ′ ) 1 − Γ ( z ′ ) = 简记为 Z 0 1 + Γ 1 − Γ (3.58a) Z_{in}(z')=\frac{U'(z')}{I'(z')}=Z_0\frac{1+\Gamma(z')}{1-\Gamma(z')} \xlongequal{简记为}Z_0\frac{1+\Gamma}{1-\Gamma} \tag{3.58a} Zin(z)=I(z)U(z)=Z01Γ(z)1+Γ(z)简记为 Z01Γ1+Γ(3.58a)

对于无耗传输线,则有
Z i n ( z ′ ) = Z c 1 + Γ 1 − Γ (3.58b) Z_{in}(z')=Z_c\frac{1+\Gamma}{1-\Gamma} \tag{3.58b} Zin(z)=Zc1Γ1+Γ(3.58b)
由(3.58)可知,传输线上任一点 z ′ z' z 的输入阻抗与反射系数具有一一对应关系。

z ′ = 0 z'=0 z=0(负载处)代入(3.58a),则得负载阻抗与终端反射系数之间的关系为
Z l = Z 0 1 + Γ l 1 − Γ l 或 Γ l = Z l − Z 0 Z l + Z 0 (3.59) Z_l=Z_0\frac{1+\Gamma_l}{1-\Gamma_l}\hspace{2em} 或 \hspace{2em} \Gamma_l=\frac{Z_l-Z_0}{Z_l+Z_0} \tag{3.59} Zl=Z01Γl1+ΓlΓl=Zl+Z0ZlZ0(3.59)
显然可以看出:

  • Z l = Z 0 Z_l=Z_0 Zl=Z0 时, Γ l = 0 \Gamma_l=0 Γl=0 ,负载端无反射,此时的负载称为匹配负载
  • Z l = 0 Z_l=0 Zl=0 时(负载短路), Γ l = − 1 \Gamma_l=-1 Γl=1 ,负载端发生全反射。
  • Z l = ∞ Z_l=\infty Zl= 时(负载开路), Γ l = 1 \Gamma_l=1 Γl=1 ,负载端发生全反射。
3.3.4 无耗传输线上导波的多重反射

(…)

3.4 均匀无耗传输线终端接不同负载时的工作状态

对于均匀无耗传输线接不同负载时的三种工作状态,主要区别在于入射波和反射波的状态。

  • 行波工作状态( Γ l = 0 \Gamma_l=0 Γl=0);
  • 纯驻波工作状态( ∣ Γ l ∣ = 1 |\Gamma_l|=1 Γl=1);
  • 行驻波工作状态($0<|\Gamma_l| <1 $);
3.4.1 行波工作状态

行波工作状态又称为无反射工作状态。由式(3.59)和(3.55)两式可知,当无耗传输线的负载阻抗等于传输线的特性阻抗或传输线半无限长,即 Z l = Z c Z_l=Z_c Zl=Zc 时, Γ ( z ′ ) = 0 \Gamma(z')=0 Γ(z)=0 ,线上只有电压入射波和电流入射波,传输线工作于行波状态,此时负载称为负载匹配。

3.4.2 纯驻波工作状态

纯驻波工作状态又称为全反射工作状态。由式(3.59)和(3.55)两式可知,当传输线终端短路时, Z l = 0 , Γ l = − 1 , ∣ Γ ( z ′ ) ∣ = 1 Z_l=0,\Gamma_l=-1,|\Gamma(z')|=1 Zl=0,Γl=1,∣Γ(z)=1 ;当传输线终端开路时, Z l = ∞ , Γ l = 1 , ∣ Γ ( z ′ ) ∣ = 1 Z_l=\infty,\Gamma_l=1,|\Gamma(z')|=1 Zl=,Γl=1,∣Γ(z)=1 ;当传输线接电抗性负载时, Z l = ± j X l , ∣ Γ ( z ′ ) ∣ = 1 Z_l=\pm jX_l,|\Gamma(z')|=1 Zl=±jXl,∣Γ(z)=1 。在上述三种情况中,传输线终端的入射波均被全部反射,沿线入射波与反射波叠加形成纯驻波分布。下面主要讨论终端短路的情况。

1 终端短路

无耗传输线的终端短路时, Z l = 0 , Γ l = − 1 , Γ ( z ′ ) = − e − j 2 β z ′ Z_l=0,\Gamma_l=-1,\Gamma(z')=-e^{-j2\beta z'} Zl=0,Γl=1,Γ(z)=ej2βz 。于是由式(3.57)可得传输线上的电压、电流分布为
U ( z ′ ) = U ′ + e j β z ′ ( 1 − e − j 2 β z ′ ) = 2 j U ′ + sin ⁡ β z ′ I ( z ′ ) = U ′ + Z c e j β z ′ ( 1 + e − j 2 β z ′ ) = 2 U ′ + Z c cos ⁡ β z ′ (3.69) \begin{align} U(z')&=U'^+e^{j\beta z'}(1- e^{-j2\beta z'})= 2jU'^+ \sin\beta z' \\ I(z')&=\frac{U'^+}{Z_c}e^{j\beta z'}(1+e^{-j2\beta z'})= 2\frac{U'^+}{Z_c} \cos\beta z' \end{align}\tag{3.69} U(z)I(z)=U+ejβz(1ej2βz)=2jU+sinβz=ZcU+ejβz(1+ej2βz)=2ZcU+cosβz(3.69)
上式的瞬时表达式为
u ( z ′ , t ) = 2 ∣ U ′ + ∣ sin ⁡ β z ′ cos ⁡ ( ω t + φ + ′ + π 2 ) i ( z ′ , t ) = 2 ∣ U ′ + ∣ Z c cos ⁡ β z ′ ( ω t + φ + ′ ) (3.70) \begin{align} u(z',t)&=2|U'^+| \sin\beta z'\cos\big(\omega t+\varphi_+'+\frac{\pi}{2}\big)\\ i(z',t)&=2\frac{|U'^+|}{Z_c}\cos\beta z'\big(\omega t+\varphi_+'\big) \end{align}\tag{3.70} u(z,t)i(z,t)=2∣U+sinβzcos(ωt+φ++2π)=2ZcU+cosβz(ωt+φ+)(3.70)
显然,沿线各点电压、电流均随时间作余弦变化,相位相差 π / 2 \pi/2 π/2 ;沿线各点电压、电流的振幅分别按正弦和余弦分布,在 z ′ = n π / β = n λ / 2 ( n = 0 , 1 , 2 , ⋯   ) z'=n\pi/\beta=n\lambda/2(n=0,1,2,\cdots) z=/β=/2(n=0,1,2,) 处电压振幅值为零,电流振幅达极大值,且等于 2 ∣ U ′ + ∣ / Z c 2|U'^+|/Z_c 2∣U+∣/Zc , 此时称这些位置为电压波节点电流波腹点) 。在 z ′ = ( 2 n + 1 ) λ / 4 ( n = 0 , 1 , 2 , ⋯   ) z'=(2n+1)\lambda/4(n=0,1,2,\cdots) z=(2n+1)λ/4(n=0,1,2,) 处电压振幅值达极大值,电流振幅达为零,且等于 2 ∣ U ′ + ∣ / Z c 2|U'^+|/Z_c 2∣U+∣/Zc , 此时称这些位置为电压波腹点电流波节点)。

图3.10(a)是电压、电流的振幅分布图。由此可见,电压、电流的时间、空间相位各相差 π / 2 \pi/2 π/2 ,这表明在波所携带的电磁能量中,当电场能量达到极大值时磁场能量为零,当磁场能量达到极大值时电场能量为零,即波所携带的电磁能量相互转换,形成电磁振荡而不携带能量沿线传播。

在这里插入图片描述

由式(3.69)可得无耗短路传输线得输入阻抗为
Z i n ( z ′ ) = j Z c tan ⁡ β z ′ (3.71) Z_{in}(z')=jZ_c\tan\beta z' \tag{3.71} Zin(z)=jZctanβz(3.71)
输入阻抗沿线分布如图3.10(b)所示。从图中可知,无耗短路传输线的输入阻抗为一纯电抗,电抗随频率和长度而变化。

  • z ′ = n λ / 2 ( n = 0 , 1 , 2 , ⋯   ) z'=n\lambda/2(n=0,1,2,\cdots) z=/2(n=0,1,2,) 处, Z i n ( z ′ ) = 0 Z_{in}(z')=0 Zin(z)=0,相当于串联谐振;
  • z ′ = ( 2 n + 1 ) λ / 4 ( n = 0 , 1 , 2 , ⋯   ) z'=(2n+1)\lambda/4(n=0,1,2,\cdots) z=(2n+1)λ/4(n=0,1,2,) 处, Z i n ( z ′ ) → ∞ Z_{in}(z')\to\infty Zin(z),相当于并联谐振;
  • 0 < z ′ < λ / 4 0<z'<\lambda/4 0<z<λ/4 处, Z i n ( z ′ ) = j X Z_{in}(z')=jX Zin(z)=jX,相当于纯电感;
  • λ / 4 < z ′ < λ / 2 \lambda/4<z'<\lambda/2 λ/4<z<λ/2 处, Z i n ( z ′ ) = − j X Z_{in}(z')=-jX Zin(z)=jX,相当于纯电容;

此外,如图所示,从短路终端算起,每隔 λ / 4 \lambda/4 λ/4 长度,阻抗的性质就改变一次,此特性称为传输线的 λ / 4 \lambda/4 λ/4 阻抗变换性;每隔 λ / 2 \lambda/2 λ/2 长度,阻抗将重复一次,此特性称为传输线的 λ / 2 \lambda/2 λ/2 阻抗重复性

在射频/微波技术中,利用无耗短路线的这两个特性可以设计出不同用途的元件。

2 终端开路

无耗传输线的终端开路时, Z l = ∞ , Γ l = 1 , Γ ( z ′ ) = e − j 2 β z ′ Z_l=\infty,\Gamma_l=1,\Gamma(z')=e^{-j2\beta z'} Zl=,Γl=1,Γ(z)=ej2βz 。于是由式(3.57)可得传输线上的电压、电流分布为
U ( z ′ ) = U ′ + e j β z ′ ( 1 + e − j 2 β z ′ ) = 2 U ′ + cos ⁡ β z ′ I ( z ′ ) = U ′ + Z c e j β z ′ ( 1 − e − j 2 β z ′ ) = 2 j U ′ + Z c sin ⁡ β z ′ (3.72) \begin{align} U(z')&=U'^+e^{j\beta z'}(1+ e^{-j2\beta z'})= 2U'^+ \cos\beta z' \\ I(z')&=\frac{U'^+}{Z_c}e^{j\beta z'}(1-e^{-j2\beta z'})= 2j\frac{U'^+}{Z_c} \sin\beta z' \end{align}\tag{3.72} U(z)I(z)=U+ejβz(1+ej2βz)=2U+cosβz=ZcU+ejβz(1ej2βz)=2jZcU+sinβz(3.72)
则传输线上 z ′ z' z 点的输入阻抗为
Z i n ( z ′ ) = − j Z c cot ⁡ β z ′ (3.73) Z_{in}(z')=-jZ_c\cot\beta z' \tag{3.73} Zin(z)=jZccotβz(3.73)
由此易得,无耗终端开路传输线的驻波特性应与无耗短路传输线类似,只需将无耗短路传输线驻波特性曲线向波源方向平移 λ / 4 \lambda/4 λ/4 长度可得。这是因为传输线具有 λ / 4 \lambda/4 λ/4 阻抗变换特性。

同理,当传输线终端接电抗性负载时,其驻波特性也可由无耗短路传输线平移一定长度得到。

3.4.3 行驻波工作状态

行驻波工作状态又称为部分反射工作状态。当传输线终端接任意复阻抗 Z l = R l ± j X l Z_l=R_l\pm jX_l Zl=Rl±jXl 时,其终端反射系数为
Γ l = Z l − Z c Z l + Z c = ( R l − Z c ) ± j X l ( R l + Z c ) ± j X l = R l 2 − Z c 2 + X l 2 ( R l + Z c ) 2 + X l 2 ± j 2 X l Z c ( R l + Z c ) 2 + X l 2 = ∣ Γ l ∣ e ± j φ l (3.74) \Gamma_l=\frac{Z_l-Z_c}{Z_l+Z_c}=\frac{(R_l-Z_c)\pm jX_l}{(R_l+Z_c)\pm jX_l}= \frac{R_l^2-Z_c^2+X_l^2}{(R_l+Z_c)^2+ X_l^2}\pm j\frac{2X_lZ_c}{(R_l+Z_c)^2+ X_l^2}=|\Gamma_l|e^{\pm j\varphi_l} \tag{3.74} Γl=Zl+ZcZlZc=(Rl+Zc)±jXl(RlZc)±jXl=(Rl+Zc)2+Xl2Rl2Zc2+Xl2±j(Rl+Zc)2+Xl22XlZc=Γle±jφl(3.74)

式中,
∣ Γ l ∣ = ( R l − Z c ) 2 + X l 2 ( R l + Z c ) 2 + X l 2 (3.75a) |\Gamma_l|=\sqrt{\frac{(R_l-Z_c)^2+ X_l^2}{(R_l+Z_c)^2+ X_l^2}} \tag{3.75a} Γl=(Rl+Zc)2+Xl2(RlZc)2+Xl2 (3.75a)

φ l = arctan ⁡ ( 2 X l Z c R l 2 − Z c 2 + X l 2 ) (3.75b) \varphi_l=\arctan(\frac{2X_lZ_c}{R_l^2-Z_c^2+X_l^2}) \tag{3.75b} φl=arctan(Rl2Zc2+Xl22XlZc)(3.75b)

由式(3.75a)可知, ∣ Γ l ∣ < 1 |\Gamma_l|<1 Γl<1,这表明负载端发生部分反射,此时传输线工作与行驻波工作状态。传输线上电压、电流的表达式为
U ( z ′ ) = U ′ + e j β z ′ + U ′ + Γ l e − j β z ′ I ( z ′ ) = U ′ + Z c e j β z ′ − U ′ + Z c Γ l e − j β z ′ (3.76) \begin{align} U(z')&=U'^+e^{j\beta z'}+U'^+\Gamma_le^{-j\beta z'}\\ I(z')&=\frac{U'^+}{Z_c}e^{j\beta z'}-\frac{U'^+}{Z_c}\Gamma_le^{-j\beta z'} \end{align}\tag{3.76} U(z)I(z)=U+ejβz+U+Γlejβz=ZcU+ejβzZcU+Γlejβz(3.76)
于是,电压、电流模值分别为
∣ U ( z ′ ) ∣ = ∣ U ′ + ∣ [ 1 + ∣ Γ l ∣ 2 + 2 ∣ Γ l ∣ cos ⁡ ( 2 β z ′ − φ l ) ] 1 / 2 ∣ I ( z ′ ) ∣ = ∣ U ′ + ∣ Z c [ 1 + ∣ Γ l ∣ 2 − 2 ∣ Γ l ∣ cos ⁡ ( 2 β z ′ − φ l ) ] 1 / 2 (3.77) \begin{align} |U(z')|&=|U'^+|\big[1+|\Gamma_l|^2+2|\Gamma_l|\cos(2\beta z'-\varphi_l)\big]^{1/2}\\ |I(z')|&=\frac{|U'^+|}{Z_c}\big[1+|\Gamma_l|^2- 2|\Gamma_l|\cos(2\beta z'-\varphi_l)\big]^{1/2} \end{align}\tag{3.77} U(z)I(z)=U+[1+Γl2+2∣Γlcos(2βzφl)]1/2=ZcU+[1+Γl22∣Γlcos(2βzφl)]1/2(3.77)

为方便对行驻波工作状态下传输线上电压、电流的振幅分布输入阻抗特性进行分析,计算求出电压波腹、波节(或电流波节、波腹)点的位置以及电压、电流在波腹和波节点处的大小。

1 波腹和波节处电压、电流的大小

当式(3.77)中 cos ⁡ ( 2 β z ′ − φ l ) = 1 \cos(2\beta z'-\varphi_l)=1 cos(2βzφl)=1 时,此时对应电压波腹点、电流波节点;当式(3.77)中 cos ⁡ ( 2 β z ′ − φ l ) = − 1 \cos(2\beta z'-\varphi_l)=-1 cos(2βzφl)=1 时,此时对应电压波节点、电流波腹点;此时可得电压(振幅)极大值、极小值和电流(振幅)极大值、极小值为:
∣ U ∣ max = ∣ U ′ + ∣ ( 1 + ∣ Γ l ∣ ) , ∣ U ∣ min = ∣ U ′ + ∣ ( 1 − ∣ Γ l ∣ ) (3.78a) |U|_\text{max}=|U'^+|(1+|\Gamma_l|),\hspace{2em}|U|_\text{min}=|U'^+|(1-|\Gamma_l|)\\ \tag{3.78a} Umax=U+(1+Γl),Umin=U+(1Γl)(3.78a)

∣ I ∣ max = ∣ U ′ + ∣ Z c ( 1 + ∣ Γ l ∣ ) , ∣ I ∣ min = ∣ U ′ + ∣ Z c ( 1 − ∣ Γ l ∣ ) (3.78b) |I|_\text{max}=\frac{|U'^+|}{Z_c}(1+|\Gamma_l|),\hspace{2em} |I|_\text{min}=\frac{|U'^+|}{Z_c}(1-|\Gamma_l|)\\ \tag{3.78b} Imax=ZcU+(1+Γl),Imin=ZcU+(1Γl)(3.78b)

由此可见,当终端为复阻抗时,传输线上电压、电流值将小于入射波振幅的 2 倍,极小值也不为零。

2 波腹点和波节点的位置

由(3.77)可知,当 2 β z ′ − φ l = 2 n π ( n = 0 , 1 , 2 , ⋯   ) 2\beta z'-\varphi_l=2n\pi(n=0,1,2,\cdots) 2βzφl=2(n=0,1,2,) 时,电压振幅达到极大值,电流振幅达到极小值,由此可得电压波腹点、电流波节点的位置为
z max ′ = 2 n π + φ l 2 β = λ φ l 4 π + n λ 2 ( n = 0 , 1 , 2 , ⋯   ) (3.79) z'_\text{max}=\frac{2n\pi+\varphi_l}{2\beta}= \frac{\lambda\varphi_l}{4\pi}+n\frac{\lambda}{2}\hspace{2em}(n=0,1,2,\cdots) \tag{3.79} zmax=2β2+φl=4πλφl+n2λ(n=0,1,2,)(3.79)
距终端出现的第一个电压波腹点的位置为
z max1 ′ = λ 4 π φ l (3.80) z'_\text{max1}=\frac{\lambda}{4\pi}\varphi_l \tag{3.80} zmax1=4πλφl(3.80)
由(3.77)可知,当 2 β z ′ − φ l = ( 2 n ± 1 ) π ( n = 0 , 1 , 2 , ⋯   ) 2\beta z'-\varphi_l=(2n\pm1)\pi(n=0,1,2,\cdots) 2βzφl=(2n±1)π(n=0,1,2,) 时,电压振幅达到极大值,电流振幅达到极小值,由此可得电压波腹点、电流波节点的位置为
z min ′ = ( 2 n ± 1 ) π + φ l 2 β = λ φ l 4 π + ( 2 n ± 1 ) λ 4 ( n = 0 , 1 , 2 , ⋯   ) (3.81) z'_\text{min}=\frac{(2n\pm1)\pi+\varphi_l}{2\beta}= \frac{\lambda\varphi_l}{4\pi}+(2n\pm1)\frac{\lambda}{4}\hspace{2em}(n=0,1,2,\cdots) \tag{3.81} zmin=2β(2n±1)π+φl=4πλφl+(2n±1)4λ(n=0,1,2,)(3.81)
式中, − - 对应终端接容性负载,而 + + + 对应终端接感性负载。显然,距终端出现的第一个电压波节点的位置为
z min1 ′ = λ φ l 4 π ± λ 4 = z max1 ′ ± λ 4 (3.82) z'_\text{min1}=\frac{\lambda\varphi_l}{4\pi}\pm\frac{\lambda}{4}= z'_\text{max1}\pm\frac{\lambda}{4}\tag{3.82} zmin1=4πλφl±4λ=zmax1±4λ(3.82)

由以上各式可见,电压和电流的波腹、波节点位置取决于 φ l \varphi_l φl,即取决于负载阻抗的性质。下面分别讨论终端接四种不同负载阻抗时电压、电流振幅的分布情况。

1) Z l = R l < Z c Z_l=R_l<Z_c Zl=Rl<Zc (终端接小电阻)

由(3.74)和(3.80)两式可知,此时 φ l = π , z max1 ′ = λ 4 , z min ′ = 0 \varphi_l=\pi,z'_\text{max1}=\frac{\lambda}{4},z'_\text{min}=0 φl=π,zmax1=4λ,zmin=0 。这表明,当终端接小于特性阻抗的纯电阻性负载时,终端处为电压波节点、电流波腹点。此时电压、电流振幅分布如图3.12(a)所示。

image-20230901110825849

2) Z l = R l > Z c Z_l=R_l>Z_c Zl=Rl>Zc (终端接大电阻)

由(3.74)和(3.80)两式可知,此时 φ l = 0 , z max1 ′ = 0 , z min ′ = λ 4 \varphi_l=0,z'_\text{max1}=0,z'_\text{min}=\frac{\lambda}{4} φl=0,zmax1=0,zmin=4λ 。这表明,当终端接大于特性阻抗的纯电阻性负载时,终端处为电压波腹点、电流波节点。此时电压、电流振幅分布如图3.12(b)所示。

3) Z l = R l + j X l Z_l=R_l+jX_l Zl=Rl+jXl (终端接感性负载)

由(3.74)和(3.80)两式可知,此时 0 < φ l < π , 0 < z max1 ′ < λ / 4 0<\varphi_l<\pi,0<z'_\text{max1}<\lambda/4 0<φl<π,0<zmax1<λ/4 。这表明,当终端接感性负载,离开终端的第一个出现的是电压波腹点、电流波节点。此时电压、电流振幅分布如图3.12(v)所示。

4) Z l = R l − j X l Z_l=R_l-jX_l Zl=RljXl (终端接容性负载)

由(3.74)和(3.80)两式可知,此时 π < φ l < 2 π , λ / 4 < z max1 ′ < λ / 2 \pi<\varphi_l<2\pi,\lambda/4<z'_\text{max1}<\lambda/2 π<φl<2π,λ/4<zmax1<λ/2 。这表明,当终端接容性负载时,终端处为电压波节点、电流波腹点。此时电压、电流振幅分布如图3.12(d)所示。

3 驻波系数

为描述传输线上驻波大小,引入电压驻波系数(或称电压驻波比(VSWR))。定义为传输线上波腹点电压与波节点电压之比,记为 ρ \rho ρ ,即
ρ = ∣ U ∣ max ∣ U ∣ min (3.83) \rho=\frac{|U|_\text{max}}{|U|_\text{min}}\tag{3.83} ρ=UminUmax(3.83)
电压驻波比与反射系数均反应传输线上的反射情况,只不过出发点不同,因此电压驻波比与发射系数一一对应:
ρ = 1 + ∣ Γ l ∣ 1 − ∣ Γ l ∣ 或 ∣ Γ l ∣ = ρ − 1 ρ + 1 (3.84) \rho=\frac{1+|\Gamma_l|}{1-|\Gamma_l|}\hspace{1em}或\hspace{1em} |\Gamma_l|=\frac{\rho-1}{\rho+1}\tag{3.84} ρ=1Γl1+ΓlΓl=ρ+1ρ1(3.84)
由此可见:

  • Z l = Z c Z_l=Z_c Zl=Zc 时, ∣ Γ l ∣ = 0 , ρ = 1 |\Gamma_l|=0,\rho=1 Γl=0,ρ=1 ,线上载行波;
  • Z l = 0 , ∞ 或 ± j X l Z_l=0,\infty或\pm jX_l Zl=0,±jXl 时, ∣ Γ l ∣ = 1 , ρ = ∞ |\Gamma_l|=1,\rho=\infty Γl=1,ρ= ,线上载纯驻波;
  • 当 $Z_l=R_l\pm jX_l $ 时, 0 < ∣ Γ l ∣ < 1 , 1 < ρ < ∞ 0<|\Gamma_l|<1,1<\rho<\infty 0<Γl<1,1<ρ< ,线上载行驻波;

4 阻抗特性

当终端接任意复阻抗时,无耗传输线上任一点处的输入阻抗由式(3.51)可得
Z i n ( z ′ ) = Z c Z l + j Z c tan ⁡ β z ′ Z c + j Z l tan ⁡ β z ′ = R + j X (3.88) Z_{in}(z')=Z_c\frac{Z_l+jZ_c\tan\beta z'}{Z_c+jZ_l\tan\beta z'}= R+jX \tag{3.88} Zin(z)=ZcZc+jZltanβzZl+jZctanβz=R+jX(3.88)
Z l = R l ± j X l Z_l=R_l\pm jX_l Zl=Rl±jXl ,代入,并将实、虚部分开,得
R = Z c 2 R l sec ⁡ 2 β z ′ ( Z c ∓ X l tan ⁡ β z ′ ) 2 + ( R l tan ⁡ β z ′ ) 2 X = Z c ± ( Z c ∓ X l tan ⁡ β z ′ ) ( X l ± Z c tan ⁡ β z ′ ) − R l 2 tan ⁡ β z ′ ( Z c ∓ X l tan ⁡ β z ′ ) 2 + ( R l tan ⁡ β z ′ ) 2 (3.89) \begin{align} R&=Z_c^2R_l\frac{\sec^2\beta z'}{(Z_c\mp X_l\tan\beta z')^2+(R_l\tan\beta z')^2}\\\\ X&=Z_c\frac{\pm(Z_c\mp X_l\tan\beta z')(X_l\pm Z_c\tan\beta z')-R_l^2\tan\beta z'} {(Z_c\mp X_l\tan\beta z')^2+(R_l\tan\beta z')^2} \end{align}\tag{3.89} RX=Zc2Rl(ZcXltanβz)2+(Rltanβz)2sec2βz=Zc(ZcXltanβz)2+(Rltanβz)2±(ZcXltanβz)(Xl±Zctanβz)Rl2tanβz(3.89)
由此可得终端接任意复阻抗时沿线得阻抗分布曲线。如图3.13 所示。

image-20230902091623978

如图所示,每隔 λ / 4 \lambda/4 λ/4 长度,阻抗的性质就改变一次,此特性称为传输线的 λ / 4 \lambda/4 λ/4 阻抗变换性;每隔 λ / 2 \lambda/2 λ/2 长度,阻抗将重复一次,此特性称为传输线的 λ / 2 \lambda/2 λ/2 阻抗重复性;在波腹、波节点处,阻抗呈纯阻性。

在电压波腹点处,阻抗出现极大值(相当于并联谐振),其值为
Z max = R max = ∣ U ∣ max ∣ I ∣ min = Z c 1 + ∣ Γ l ∣ 1 − ∣ Γ l ∣ = Z c ρ (3.90) Z_\text{max}=R_\text{max}=\frac{|U|_\text{max}}{|I|_\text{min}}= Z_c\frac{1+|\Gamma_l|}{1-|\Gamma_l|}=Z_c\rho\tag{3.90} Zmax=Rmax=IminUmax=Zc1Γl1+Γl=Zcρ(3.90)
在电压波节点处,阻抗出现极小值(相当于串联谐振),其值为
Z min = R min = ∣ U ∣ min ∣ I ∣ max = Z c 1 − ∣ Γ l ∣ 1 + ∣ Γ l ∣ = Z c ρ (3.90) Z_\text{min}=R_\text{min}=\frac{|U|_\text{min}}{|I|_\text{max}}= Z_c\frac{1-|\Gamma_l|}{1+|\Gamma_l|}=\frac{Z_c}{\rho}\tag{3.90} Zmin=Rmin=ImaxUmin=Zc1+Γl1Γl=ρZc(3.90)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值