Dense Video Captioning: A Survey of Techniques, Datasets and Evaluation Protocols

这是23年11月份的关于DVC的综述,感觉这篇综述讲的比较全面。

1. 背景

密集视频描述生成(DVC)旨在检测和描述视频中的不同事件,这种任务最早在2017年的ActivityNet挑战中提出。DVC相比于传统的视频描述生成更加复杂,因为它不仅仅描述视频的整体内容,还需要捕捉视频中的多重事件及其时间戳。这种技术有广泛的应用场景,例如盲人导航、视频检索、监控系统、医学图像分析、自动生成视频字幕等。

2. DVC的发展历程

视频内容分析的研究随着大规模视频数据集和共享平台(如YouTube、Netflix等)的普及而迅速发展。DVC的发展可以追溯到1970年代,当时研究人员开始探索在视频和图像中检测和生成描述的技术。1970年代的研究奠定了现代计算机视觉技术的基础,如边缘检测和场景理解。进入21世纪后,随着深度学习的兴起,视频处理技术得到了迅速发展。早期的视频字幕生成主要使用基于规则和模板的方法,现代的DVC则更依赖于神经网络模型,尤其是序列到序列(seq-to-seq)的建模方法。2017年之后,大多数DVC技术采用LSTM(长短时记忆网络)或编码器-解码器架构来生成长视频中的事件描述。

3. DVC的子任务

DVC分为三个主要子任务:

  1. 视频特征提取(VFE):从输入视频中提取有用的特征,生成特征向量。
  2. 时间事件定位(TEL):识别视频中事件的开始和结束时间。
  3. 密集描述生成(DCG):生成描述事件的自然语言字幕。
3.1 视频特征提取(VFE)

视频特征提取通常使用卷积神经网络(CNN)来处理视频帧并提取空间和时间特征。常用的模型包括C3D、I3D、ResNet等。这些模型能够从视频中提取出语义相关的特征,并生成可用于后续任务的高维特征向量。

视频特征提取是密集视频字幕生成(Dense Video Captioning, DVC)任务中最基础的步骤之一。它的目标是从原始视频数据中提取出能够代表视频内容的高维特征。这些特征可以描述视频的颜色、纹理、形状、动作等多个维度的信息。视频特征提取的质量直接影响后续的时间事件定位(Temporal Event Localization, TEL)和密集字幕生成(Dense Caption Generation, DCG)的效果。以下是关于视频特征提取技术的详细讲述:

 1. 问题定义
视频特征提取的基本任务是给定一个视频 \( V = \{v_i\} \),其中 \( |v| \) 是视频中的帧数,目标是从中提取出一组有意义且信息丰富的特征,这些特征可以表示视频的视觉内容。提取出的特征集合可以表示为 \( F = \{f_i\} \),其中每个特征 \( f_i \) 是一个高维向量,捕捉了视频的特定方面(如颜色、纹理、动作等)的信息。

2. 常用的视频特征提取方法
2.1 基于3D卷积神经网络的特征提取
3D卷积神经网络(3D-CNN)是视频特征提取中常用的方法,它不仅可以捕捉视频帧中的空间特征,还可以同时处理时间维度上的特征。这使得3D-CNN在处理视频数据时表现优异,尤其适用于动作识别和视频分类任务。

C3D模型:C3D是最早提出的3D卷积神经网络之一,专门用于从视频中提取时空特征。它在动作识别任务中表现出色,广泛应用于视频分类和数据增强(如时间抖动)等任务中。
输入:视频帧。
预训练数据:Sports-1M(用于运动场景的动作识别)。
应用领域:动作识别、视频分析。

I3D(Inflated 3D ConvNets):I3D是Google DeepMind提出的一种扩展自2D卷积神经网络的3D模型。它将2D卷积层扩展为3D,以直接从视频数据中学习时空特征,表现优异。
输入:视频帧。
预训练数据:ImageNet和Kinetics数据集(适用于动作识别和视频分析)。
应用领域:视频分类、动作识别。

 2.2 预训练模型的使用
预训练模型可以显著提升视频特征提取的效率,尤其是在数据量有限的情况下,使用在大规模数据集上预训练过的模型进行迁移学习是非常有效的策略。常用的预训练模型包括:

ResNet:ResNet(残差网络)是一种广泛应用于图像分类和特征提取的模型。在DVC任务中,ResNet被用于从视频帧中提取静态视觉特征。通过“跳跃连接”来缓解梯度消失问题,ResNet能够训练非常深的网络模型。
应用:图像分类、目标检测、图像处理。

VGGish:VGGish是一种专门用于音频特征提取的模型,它基于VGG架构,被Google的研究人员提出。VGGish模型用于将原始音频波形转换为紧凑的嵌入,这些嵌入可以用于音频分类、相似性搜索等任务。
输入:音频数据(通常为音频频谱)。
预训练数据:YouTube-100M(用于大规模音频数据的分类和检索)。
应用领域:音频分类、内容检索。

 2.3 多模态特征提取
在一些DVC系统中,不仅依赖于视觉特征,还会结合其他模态(如音频和语言)进行特征提取。这种多模态特征提取方式能够提高系统的鲁棒性和描述能力。例如:  

CLIP(Contrastive Language-Image Pre-training):CLIP是一种“零样本学习”模型,它可以在没有明确训练任务的情况下,执行多种视觉和语言任务。CLIP通过同时训练图像和文本对,学习到了一种可以同时处理图像和文本的通用表示。
输入:图像和文本。
预训练数据:ImageNet和大规模文本语料库。

EfficientNet:EfficientNet是一种优化的CNN架构,通过复合缩放的方式,能在保持模型效率的同时提升性能。它被用于处理视频帧,尤其适用于需要高效推理的任务。
输入:视频帧。
预训练数据:ImageNet。

3. 特征提取中的关键挑战
3.1 空间和时间信息的整合
视频包含大量的时空信息,如何有效提取这些信息是视频特征提取中的一个核心挑战。3D-CNN通过同时处理时间和空间信息,为动作识别等任务提供了有效的解决方案。然而,这类模型通常计算复杂度较高,因此在实际应用中需要考虑计算效率。

 3.2 多模态特征的融合
视频不仅包含视觉信息,还包括音频和文本等其他模态。在多模态视频分析中,如何有效融合来自不同模态的特征以提高整体系统的性能是一个重要问题。例如,在视频字幕生成任务中,音频和视觉特征的结合能够显著提升生成字幕的自然性和准确性。

3.3 特征维度的降维
视频数据的高维特征向量可能会导致计算复杂度过高,因此在特征提取过程中,通常需要对提取出的特征进行降维处理。常用的方法包括主成分分析(PCA)、聚类技术等,目的是在保证特征表达能力的前提下,降低模型的计算量。

4. 最新的研究趋势
Transformer架构的引入:随着Transformer架构在自然语言处理领域的成功,越来越多的研究开始将其应用于视频特征提取。例如,基于Transformer的模型能够捕捉视频中的长程依赖关系,从而生成更加精准的字幕描述。
预训练模型的广泛使用:越来越多的研究使用在大规模数据集上预训练的模型来提取视频特征,这种方法能够显著提升模型的泛化能力和处理效率。
多模态学习:结合视觉、听觉和语言等多模态信息的特征提取模型正在成为研究热点,通过多模态特征的相互补充,能够提高DVC系统的整体性能。
视频特征提取是密集视频描述生成中的核心步骤,它涉及从视频的多个维度提取出有用的信息,进而为后续的事件定位和描述生成任务提供基础。未来,随着更多先进模型和技术的引入(如Transformer、多模态学习等),视频特征提取将变得更加高效和智能,为密集视频字幕生成的进一步发展提供强有力的支持。

3.2 时间事件定位(TEL)

时间事件定位的目标是准确分离视频中的每个独特事件,并将其关联到特定的时间段。该任务可以通过两种方法实现:基于提案的方法和无提案的方法。基于提案的方法通常使用滑动窗口、边界感知网络等生成时间片段,随后对这些片段进行进一步处理。无提案的方法则依赖于自然语言查询等技术,直接从视频帧生成字幕,而不需要明确的事件提案。

时间事件定位(Temporal Event Localization, TEL)是密集视频字幕生成(Dense Video Captioning, DVC)中的核心步骤之一。它的任务是准确识别视频中每个事件的起始时间和结束时间。这对于长视频来说尤为重要,因为视频中的多个事件可能同时发生、相互交叠或相互关联。事件的精确定位是生成自然语言字幕的基础。以下是关于时间事件定位技术的详细讲述:

1. 时间事件定位的定义
时间事件定位的目标是从长视频中精确地分离出每个独立事件,并将其关联到特定的时间段。例如,给定一个视频 \( V = \{v_i\} \),视频包含多个帧,时间事件定位的任务是识别出事件 \( e_i \),并确定其开始时间和结束时间。事件 \( e_i \) 的表示为 \( e_i = \{e_{\text{start}}, e_{\text{end}}\} \),其中 \( e_{\text{start}} \) 和 \( e_{\text{end}} \) 分别表示事件的开始和结束时间。

2. 时间事件定位的主要方法
时间事件定位的方法可以分为两大类:基于提案的方法和 无提案的方法。

2.1 基于提案的方法
基于提案的方法是通过生成候选事件提案,再对这些提案进行评估和优化,最终获得精确的事件定位。这类方法在检测复杂视频事件时表现较好,尤其适用于视频中包含多个相关或重叠事件的情况。

2.1.1 滑动窗口方法(Sliding Window)
滑动窗口方法是时间事件定位的早期方法,它通过滑动窗口生成一系列时间段,并评估每个时间段的得分。窗口大小的选择非常关键,过小的窗口可能会错过重要的事件,过大的窗口则可能包含多个事件,降低定位的精度。

Deep Action Proposals (DAPs):2016年提出的一种基于LSTM编码视频内容并预测滑动窗口内事件的模型。它是最早尝试使用滑动窗口生成事件提案的工作之一。
  
Single-Stream Temporal (SST):2017年提出的SST方法处理整个视频的单流,并生成非重叠的滑动窗口,能够提高事件提案的召回率。相比于DAPs,SST不依赖于内存批次处理,并在单方向上生成多个偏移值,从而密集地产生提案。

2.1.2 边界感知网络(Boundary-Aware Networks)
边界感知方法直接针对事件的边界(即事件的开始和结束),它通过检测对象边界并使用粗到细的策略,精确预测事件的起始和结束时间。

Boundary-Sensitive Network (BSN):BSN采用自下而上的方法,通过置信度得分来定位视频事件。它首先定位潜在事件的边界,再对事件进行细化。
  
Boundary-Matching Network (BMN):BMN是一种自上而下的事件提案生成机制,简化了工作流程,不需要锚定机制。BMN通过评估每个密集分布的提案的置信度来优化事件定位。

2.1.3 强化学习技术
在边界感知的场景中,强化学习技术常常被用于提取事件。例如,**MABAN** 使用强化学习来提取视频的上下文语义知识,并生成动作提案。**Dense Boundary Generator (DBG)** 通过动作感知回归模块推断高层次动作。

2.1.4 上下文门控机制(Context Gating Mechanisms)
上下文门控机制根据用户的上下文来定位事件,它通过利用视觉、听觉或认知嵌入来理解事件的典型序列(例如,“揉面团”之后是“将水加入面团”)。这类方法能够生成更具人类感知能力的字幕描述。

2.2 无提案的方法
无提案的方法跳过了事件提案生成的阶段,直接从视频帧生成或定位字幕。这种方法通常计算效率较高,因为它不需要明确生成事件提案的时间对。

Moment Context Network (MCN)和Cross-modal Temporal Regression Localizer (CTRL)是无提案方法的代表性模型。它们通过视频特征和语言知识的共享嵌入,直接生成事件的描述。

2.3 基于自然语言查询的方法
基于自然语言查询的技术使用自然语言查询来帮助视频事件的定位。这类方法从视频中提取事件时依赖于查询中的语义信息,例如问题“视频中发生了什么?”可以指导模型定位视频中的具体事件。

Semantic Activity Proposal (SAP):SAP使用查询的语义特征来提取视频中的事件,采用粗到精的提案生成方法。
  
Cross-Modal LSTM (CM-LSTM):CM-LSTM利用查询的上下文语义信息,通过两流交叉模态交互网络来进行事件定位。

3. 时间事件定位中的挑战
3.1 事件的边界问题
事件边界的模糊性是时间事件定位中面临的一个主要挑战。例如,一个事件的开始和结束时间并不总是清晰可辨的,可能会有过渡阶段。如何准确界定事件的边界,并生成正确的时间戳,仍然是一个待解决的问题。

3.2 跨模态特征的融合
视频中的事件定位不仅依赖于视觉信息,还包括音频和文本等多模态信息。如何融合不同模态的信息,使得系统能够准确定位视频中的关键事件,是一个具有挑战性的任务。

3.3 事件的多义性
一个事件可能由多个动作组成,不同的模型可能会对同一事件产生不同的理解。例如,某些模型可能会将“一个人坐在火堆旁边”和“他开始唱歌”视为两个独立事件,而另一些模型可能会将其归为一个事件。因此,如何定义事件以及如何对事件进行划分是时间事件定位中的难点之一。

4. 未来发展方向
更智能的事件提案生成:未来的研究可能会致力于开发更加智能化的事件提案生成模型,使得提案模块能够更加高效和精确地生成时间片段。
基于多模态的事件定位:随着音频、视觉和文本等模态的结合,模型可以更好地理解复杂的视频场景,并生成更加丰富和准确的事件描述。
弱监督和自监督学习:在数据稀缺的情况下,使用弱监督学习或自监督学习的方法来生成事件提案和定位字幕是未来的重要方向。

5. 总结
时间事件定位是密集视频字幕生成中的核心步骤之一,准确的时间定位对于生成自然、连贯的字幕至关重要。通过不断优化滑动窗口、边界感知网络、强化学习和无提案的方法,时间事件定位技术在处理长视频中的复杂事件方面取得了显著进展。然而,随着视频内容和应用场景的多样化,如何应对事件边界的模糊性、模态融合以及事件的多义性问题,仍然是该领域面临的挑战。

3.3 密集描述生成(DCG)

描述生成阶段的目标是根据提取的视频特征和时间片段,生成准确且自然的语言描述。当前的研究大多采用基于Transformer或LSTM的模型来生成事件描述。许多方法还引入了注意力机制、递归神经网络(RNN)、预训练模型(如BERT)等来提升描述生成的效果。

密集描述生成(Dense Caption Generation, DCG)是密集视频字幕生成(Dense Video Captioning, DVC)的最后一个关键步骤。该任务的目标是为视频中的每个事件生成准确、连贯的自然语言描述。由于DVC任务需要为多个事件生成时间相关的描述,因此密集描述生成不仅要捕捉视频中事件的语义信息,还要确保描述能够与时间片段对应。以下是关于密集描述生成技术的详细讲述:

1. 密集描述生成的定义
密集描述生成的任务是基于视频特征和事件的时间定位,生成自然语言描述。给定一个视频 \( V = \{v_i\} \),视频中的事件被标记为一系列时间段 \( e = \{e_{\text{start}}, e_{\text{end}}\} \),密集描述生成的目标是为每个事件生成对应的字幕描述 \( c_i \)。描述需要能够准确表达视频片段中发生的事件,并保持语言的流畅性和连贯性。

2. 密集描述生成的主要方法

 2.1 基于Transformer的模型
近年来,Transformer 模型凭借其在自然语言处理任务中的成功,成为了密集描述生成任务中的核心技术。Transformer模型能够通过注意力机制有效处理长距离依赖关系,因此在视频字幕生成任务中非常适合捕捉事件之间的复杂关系。

2.1.1 标准Transformer
Transformer模型是通过多头自注意力机制来建模序列中各个元素之间的关系。在密集描述生成任务中,视频帧特征通过编码器-解码器架构生成对应的字幕序列。

Masked Transformer:Zhou等人最早在DVC中引入了基于Transformer的模型,提出了一种Masking策略,通过掩蔽部分视频帧特征,只关注关键帧来生成字幕。模型使用交叉熵损失和自我强化学习算法来优化生成的字幕,使得生成的语言描述更加准确。

双模态Transformer:Iashin等人提出了一种双模态Transformer(Bimodal Transformer, BMT),结合了视觉和音频特征,通过逐字生成字幕,直到出现结束标记。这种模型通过同时考虑视频和音频信号,生成更加自然和细致的描述。

2.1.2 变形Transformer(Deformable Transformer)
变形Transformer是对标准Transformer的改进版本,通过引入可变的注意力块来动态调整注意力模式。这种模型适用于在视频中捕捉动态变化的事件描述。

PDVC(Parallel Dense Video Captioning):Teng Wang等人提出了PDVC模型,该模型通过并行生成事件提案和字幕。PDVC使用变形Transformer来更好地应对视频中事件的多样性,通过解码器的并行头(caption head和localization head)生成字幕和定位事件。

2.2 基于LSTM和RNN的模型
在Transformer出现之前,大多数的视频字幕生成任务依赖于**递归神经网络(RNN)**,尤其是**长短时记忆网络(LSTM)**。LSTM通过保持上下文状态,适合处理时间序列任务,因此也被广泛应用于密集描述生成中。

2.2.1 单向LSTM
LSTM能够从视频帧特征中生成对应的字幕序列,基于前向和后向的时序信息来优化描述的生成。例如:

VSJM-Net:这个模型使用LSTM解码器,将视频特征和语言特征嵌入解码器中,逐字生成自然语言描述。该模型通过多头注意力机制生成下一个最有可能的词汇。

2.2.2 双向LSTM(Bi-LSTM)
双向LSTM不仅考虑过去的帧,还结合未来帧的信息来生成更连贯的描述。例如:

Bi-SST(双向单流时序):Bi-SST模型通过前向和后向传递视频特征,结合视频帧的时间上下文信息来生成事件描述。该模型能够生成更加连贯的描述,尤其是在视频事件之间存在依赖关系时效果尤为明显。

2.2.3 层次化LSTM(Hierarchical LSTM)
层次化LSTM适合处理视频中冗余事件和字幕生成问题。它通过分层结构,在更高层次上处理事件关系和上下文信息。

TL-NMS:该模型使用非极大值抑制(NMS)来提高提案质量,同时使用层次化LSTM来生成字幕。该模型能够消除冗余事件描述,生成简洁且准确的字幕。

2.3 预训练模型的使用
在许多密集描述生成任务中,预训练的语言模型被用来提高字幕生成的效果,尤其是在数据稀缺或模型需要处理复杂语言模式的情况下。

2.3.1 BERT与预训练Transformer
BERT等预训练的Transformer模型能够通过对大规模文本语料的预训练,捕捉语言的复杂模式,并应用于字幕生成任务。

DVCFlow:DVCFlow使用BERT预训练模型来增强字幕生成能力。该模型通过双编码器架构模拟视频信息流,并通过预训练的语言模型对视频进行编码,从而生成自然语言字幕。

2.3.2 GloVe嵌入与主题建模
GloVe等预训练的词向量模型能够将词汇映射到稠密向量空间中,捕捉词语之间的语义关系。

DVCTM:DVCTM使用GloVe进行关键字提取,并通过IBM的自然语言理解(NLU)模型进行主题建模。这种方法能够从视频和音频中提取出关键信息,并用于生成更加准确的描述。

3. 密集描述生成中的挑战

3.1 事件描述的多样性
视频中的事件往往存在多种可能的描述方式,不同的字幕生成模型可能对同一事件产生不同的语言表达。例如,一个模型可能描述“一个人在火堆旁坐下”,另一个模型可能生成“一个人在火堆旁开始唱歌”。如何生成一致且连贯的描述是一个挑战。

3.2 事件之间的上下文依赖
视频中的事件可能存在相互依赖关系,一个事件的描述可能会影响下一个事件的生成。生成模型需要捕捉这些事件之间的上下文关系,确保字幕的连贯性和逻辑性。

3.3 模态融合
生成描述时,视频中的多种模态(如视觉、音频、语言等)需要被有效结合,以生成更加丰富的字幕。例如,生成音乐会视频的字幕时,音频信号可能比视觉信号更加重要,因此模型需要适应不同模态之间的权重调整。

4. 最新研究趋势

 4.1 Transformer的广泛应用
Transformer的成功带动了DVC领域中对其的广泛应用。越来越多的研究尝试使用基于Transformer的架构来替代传统的LSTM或RNN模型,从而生成更加自然和细致的事件描述。

4.2 弱监督学习和自监督学习
由于视频字幕生成任务中标注数据稀缺,弱监督和自监督学习方法正在成为主流。通过自监督学习,模型可以利用未标注的数据进行训练,从而提升生成字幕的能力。

4.3 预训练模型的迁移学习
预训练模型在DVC中的应用越来越广泛。通过在大规模数据集上进行预训练,模型可以获得更好的泛化能力,并在密集描述生成任务中表现出色。

5. 总结
描述生成是密集视频描述生成任务的核心步骤,它的目标是为每个视频事件生成准确、连贯的自然语言描述。基于Transformer和LSTM的模型是目前主流的生成技术,结合注意力机制、多模态融合和预训练模型,未来的研究方向包括弱监督学习、自监督学习以及多模态的更智能融合。这些技术的不断进步将推动密集视频字幕生成领域的发展,为更加智能和准确的字幕生成提供支持。

4. 现状与挑战

文章总结了近年来密集视频字幕生成领域的主要研究成果,并提出了一些未来的研究方向和挑战。这些挑战包括:

  • 事件的边界定位问题:由于事件之间的边界模糊,如何精确定位事件的开始和结束时间仍然是一个挑战。
  • 多模态特征融合:如何将视觉、听觉、语言等多种模态特征融合在一起,以提升字幕生成的质量。
  • 语义理解:视频字幕生成不仅需要识别物体和动作,还需要理解事件之间的复杂关系和语境。

5. 数据集与评估标准

文章还详细介绍了用于DVC的主要数据集和评估标准。常用的数据集包括ActivityNet Captions、YouCook2等,这些数据集通常包含视频的自然语言描述以及时间戳信息。评估标准则包括BLEU、ROUGE、METEOR等指标,用于评估生成描述的准确性和自然性。

6. 未来发展方向

未来的研究方向包括:

  • 更加智能的事件提案生成:提高提案模块的准确性和效率,使其能够生成更加精确的时间片段。
  • 多模态学习的改进:引入更多的模态(如触觉、气味等)以增强模型的事件理解能力。
  • 自监督学习:在数据稀缺的情况下,利用自监督或弱监督学习方法来提升描述生成的效果。

总的来说,密集视频描述生成技术的发展伴随着深度学习和视频内容分析技术的进步而不断前进,未来在多模态融合、事件提案生成、语义理解等方面还具有广阔的研究空间。

### 基于视频的面部微表情分析的数据集、特征和算法 #### 数据集概述 微-宏表情仓库 (Micro-Macro Expression Warehouse, MMEW) 是一个全新的人脸微表情识别数据集,旨在推动微表情分析技术的发展[^1]。该数据集提供了丰富的标注信息以及多种场景下的微表情样本。 除了 MMEW 外,还有其他常用的数据集用于微表情分析,例如 CASME II 和 SAMM。这些数据集通常记录了受试者在不同情绪状态下的面部变化,并通过高帧率摄像机捕捉细微的表情差异。 #### 特征提取方法 微表情分析中的特征可以分为两类:手工设计特征和自动学习特征。 - **手工设计特征**:传统的方法依赖于专家知识来定义特征,比如 LBP-TOP(Local Binary Patterns from Three Orthogonal Planes),它能够有效描述局部纹理及其随时间的变化情况。 - **自动学习特征**:随着深度学习的进步,卷积神经网络(Convolutional Neural Networks, CNNs)被广泛应用于微表情特征的学习中。CNN 能够从原始图像中自动生成高层次语义特征,从而提高分类精度。 #### 算法综述 针对微表情检测与识别的任务,已有的算法主要集中在以下几个方面: - **时空建模**:由于微表情是一种短暂而快速的现象,因此如何有效地表示其动态特性成为关键挑战之一。一些研究尝试利用光流场或者三维张量分解等方式捕获连续帧之间的运动模式。 - **增强弱信号响应**:鉴于真实世界条件下采集到的微表情往往较难察觉,部分工作探索放大或突出显示隐藏细节的技术手段,以便更好地辅助后续处理流程。 - **迁移学习策略**:考虑到公开可用的大规模高质量训练资源稀缺这一现状,在源域上预训练好的模型参数可迁移到目标领域完成特定应用场景需求适应过程。 ```python import cv2 from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv3D, MaxPooling3D, Flatten, Dense def load_dataset(path_to_mmev): """加载并分割数据""" X, y = [], [] # 加载数据逻辑... return train_test_split(X, y) X_train, X_val, y_train, y_val = load_dataset('path/to/mmev') model = Sequential([ Conv3D(32, kernel_size=(3, 3, 3), activation='relu', input_shape=(None, None, None, 3)), MaxPooling3D(pool_size=(2, 2, 2)), Flatten(), Dense(64, activation='relu'), Dense(num_classes, activation='softmax') ]) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, validation_data=(X_val, y_val)) ``` 上述代码片段展示了一个简单的基于 3D 卷积神经网络架构来进行视频序列分类的例子。此结构特别适合用来挖掘空间及时序维度上的关联关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值