文章目录
I . 图解法
线性规划问题求解有两种方法 : ① 图解法 , ② 单纯形法 ;
- 1. 图解法 : 适用于 两个 或 三个 变量 , 如果是两个变量 , 需要绘制直角坐标系 , 如果是 三个变量 , 需要绘制立体坐标系 ;
- 2. 单纯形法 : 适用于任意变量 , 但必须将线性规划数学模型转为标准形式 ;
本篇只讨论 两个变量的 图解法 , 在直角坐标系中进行绘图 ;
图解法意义 :
- 1. 局限性大 : 实际情况下 , 我们都使用单纯形法求线性规划的解 , 图解法只能处理 2 到 3 个变量的线性规划问题 ;
- 2. 优势 : 图解法 简单 , 直观 , 便于初期对线性规划问题的 原理 和 几何意义 进行深入理解 ;
II. 图解法 处理 线性规划问题 ( 取最大值 仅有一个最优解的情况 )
使用图解法解下面的线性规划问题 :
m a x Z = 2 x 1 + x 2 s . t = { x 1 + 1.9 x 2 ≥ 3.8 x 1 − 1.9 x 2 ≤ 3.8 x 1 + 1.9 x 2 ≤ 10.2 x 1 − 1.9 x 2 ≥ − 3.8 x 1 , x 2 ≥ 0 \begin{array}{lcl} max Z = 2x_1 + x_2\\\\ s.t = \begin{cases} x_1 + 1.9x_2 \geq 3.8\\\\ x_1 - 1.9x_2 \leq 3.8\\\\ x_1 + 1.9x_2 \leq 10.2\\\\ x_1 - 1.9x_2 \geq -3.8\\\\ x_1 , x_2 \geq 0 \end{cases} \end{array} maxZ=2x1+x2s.t=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧x1+1.9x2≥3.8x1−1.9x2≤3.8x1+1.9x2≤10.2x1−1.9x2≥−3.8x1,x2≥0
大于等于 不等式 需要取直线 右侧区域 ;
小宇等于 不等式 需要取直线 左侧区域 ;
四条直线 形成一个 四边形区域 ;
绘制目标函数 , 使 2 x 1 + x 2 2x_1 + x_2 2x1+x2 与 上述 四边形相交 , 取最大值 , 经过计算 , 得到的结果最大为 20 20 20 , 此时 x 1 = 7.6 , x 2 = 2 x_1 = 7.6 , x_2 = 2 x1=7.6,x2=2
III . 图解法 处理 线性规划问题 ( 取最大值 有无穷多最优解 )
使用图解法解下面的线性规划问题 :
m a x Z = 3 x 1 + 5.7 x 2 s . t = { x 1 + 1.9 x 2 ≥ 3.8 x 1 − 1.9 x 2 ≤ 3.8 x 1 + 1.9 x 2 ≤ 10.2 x 1 − 1.9 x 2 ≥ − 3.8 x 1 , x 2 ≥ 0 \begin{array}{lcl} max Z = 3x_1 + 5.7x_2\\\\ s.t = \begin{cases} x_1 + 1.9x_2 \geq 3.8\\\\ x_1 - 1.9x_2 \leq 3.8\\\\ x_1 + 1.9x_2 \leq 10.2\\\\ x_1 - 1.9x_2 \geq -3.8\\\\ x_1 , x_2 \geq 0 \end{cases} \end{array} maxZ=3x1+5.7x2s.t=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧x1+1.9x2≥3.8x1−1.9x2≤3.8x1+1.9x2≤10.2x1−1.9x2≥−3.8x1,x2≥0
大于等于 不等式 需要取直线 右侧区域 ;
小宇等于 不等式 需要取直线 左侧区域 ;
四条直线 形成一个 四边形区域 ;
绘制目标函数 , 使
3
x
1
+
5.7
x
2
3x_1 + 5.7x_2
3x1+5.7x2 与 上述 四边形相交 , 取最大值 ,
注意该函数 图像在 坐标系中 与
x
1
+
1.9
x
2
=
10.2
x_1 + 1.9x_2 = 10.2
x1+1.9x2=10.2 图像是平行的 , 即在可行区域内 , 整个线段上所有的点都是最优解 ;
这个最优解的个数是无穷多个 ;
经过计算 , 得到的结果最大为
34.2
34.2
34.2 , 此时
(
3.8
,
4
)
到
(
7.6
,
2
)
( 3.8 , 4 ) 到 ( 7.6 , 2 )
(3.8,4)到(7.6,2) 线段之间的所有的点都是最优解
IV . 图解法 处理 线性规划问题 ( 取最小值 有一个最优解 )
使用图解法解下面的线性规划问题 :
m i n Z = 5 x 1 + 4 x 2 s . t = { x 1 + 1.9 x 2 ≥ 3.8 x 1 − 1.9 x 2 ≤ 3.8 x 1 + 1.9 x 2 ≤ 10.2 x 1 − 1.9 x 2 ≥ − 3.8 x 1 , x 2 ≥ 0 \begin{array}{lcl} min Z = 5x_1 + 4x_2\\\\ s.t = \begin{cases} x_1 + 1.9x_2 \geq 3.8\\\\ x_1 - 1.9x_2 \leq 3.8\\\\ x_1 + 1.9x_2 \leq 10.2\\\\ x_1 - 1.9x_2 \geq -3.8\\\\ x_1 , x_2 \geq 0 \end{cases} \end{array} minZ=5x1+4x2s.t=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧x1+1.9x2≥3.8x1−1.9x2≤3.8x1+1.9x2≤10.2x1−1.9x2≥−3.8x1,x2≥0
大于等于 不等式 需要取直线 右侧区域 ;
小宇等于 不等式 需要取直线 左侧区域 ;
四条直线 形成一个 四边形区域 ;
绘制目标函数 , 使 5 x 1 + 4 x 2 = 0 5x_1 + 4x_2=0 5x1+4x2=0 的 图像的 平行直线 与 上述 四边形相交 , 取最小值 , 经过计算 , 得到的结果最小值为 8 8 8 , 此时 x 1 = 0 , x 2 = 2 x_1 = 0 , x_2 = 2 x1=0,x2=2
V . 图解法 处理 线性规划问题 ( 无界解 )
使用图解法解下面的线性规划问题 :
m a x Z = x 1 + 2 x 2 s . t = { x 1 + 3 x 2 ≥ 6 x 1 + x 2 ≥ 4 3 x 1 + x 2 ≥ 6 x 1 , x 2 ≥ 0 \begin{array}{lcl} max Z = x_1 + 2x_2\\\\ s.t = \begin{cases} x_1 + 3x_2 \geq 6\\\\ x_1 + x_2 \geq 4\\\\ 3x_1 + x_2 \geq 6\\\\ x_1 , x_2 \geq 0 \end{cases} \end{array} maxZ=x1+2x2s.t=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧x1+3x2≥6x1+x2≥43x1+x2≥6x1,x2≥0
大于等于 不等式 需要取直线 右侧区域 ;
小宇等于 不等式 需要取直线 左侧区域 ;
四条直线 无法 形成一个 闭合形区域 , 整体区域是开放的 , 最优解随着
x
1
,
x
2
x_1 , x_2
x1,x2 变量增加而增大 , 没有任何限制
此时该线性规划有无数个解 , 并且其最大值没有边界 ;
这种情况下称为线性规划的解是无界解 , 同时也没有最优解 ;
VI . 图解法 处理 线性规划问题 ( 无可行解 )
使用图解法解下面的线性规划问题 :
m a x Z = 3 x 1 + 4 x 2 s . t = { 2 x 1 + x 2 ≤ 40 x 1 + 1.5 x 2 ≤ 30 x 1 + x 2 ≥ 50 x 1 , x 2 ≥ 0 \begin{array}{lcl} max Z = 3x_1 + 4x_2\\\\ s.t = \begin{cases} 2x_1 + x_2 \leq 40\\\\ x_1 + 1.5x_2 \leq 30\\\\ x_1 + x_2 \geq 50\\\\ x_1 , x_2 \geq 0 \end{cases} \end{array} maxZ=3x1+4x2s.t=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧2x1+x2≤40x1+1.5x2≤30x1+x2≥50x1,x2≥0
大于等于 不等式 需要取直线 右侧区域 ;
小宇等于 不等式 需要取直线 左侧区域 ;
绘制目标函数 , 绘制 3 x 1 + 4 x 2 ≥ 0 3x_1 + 4x_2 \geq 0 3x1+4x2≥0 的 图像 , 发现 该图像的 任何 平行直线 与 上述 四边形 都不相交 , 这种情况属于没有 可行解 , 同时也没有最优解
VII . 线性规划解的情况
线性规划有以下情况的解 : ① 有唯一最优解 , ② 有无穷多最优解 , ③ 无界解 , ④ 无可行解 ;
使用图解法的关键 :
- ① 可行域 : 根据 大于等于 或 小宇等于 不等式 , 判断可行区域 ;
- ② 目标函数绘制 : 目标函数的移动方向 , 其变量必须都大于 0 , 先绘制 等于 0 的直线 , 然后都必须朝着大于 0 的方向移动 ;