【集合论】关系闭包 ( 自反闭包 | 对称闭包 | 传递闭包 )

本文介绍了关系闭包的三种主要类型:自反闭包、对称闭包和传递闭包。自反闭包通过添加有序对使关系自反;对称闭包确保关系对称;传递闭包则保证关系传递。每个闭包都是包含原始关系且具有特定性质的最小集合。通过对关系图的分析,展示了如何构造这些闭包,以实现特定的数学特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >





一、关系闭包



包含给定的元素 , 并且 具有指定性质最小的 集合 , 称为关系的闭包 ; 这个指定的性质就是关系 R R R

自反闭包 r ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 自反 的 最小的二元关系

对称闭包 s ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 对称 的 最小的二元关系

传递闭包 t ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成传递 的 最小的二元关系


定义中有三个重要要素 :

  • 包含给定元素
  • 具有指定性质
  • 最小的二元关系




二、自反闭包



自反闭包 r ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 自反 的 最小的二元关系

R ⊆ r ( R ) R \subseteq r(R) Rr(R)

r ( R ) r(R) r(R) 是自反的

∀ S ( ( R ⊆ S ∧ S 自 反 ) → r ( R ) ⊆ S ) \forall S ( ( R \subseteq S\land S 自反 ) \to r(R) \subseteq S) S((RSS)r(R)S)


关系 R R R 的关系图 G ( R ) G(R) G(R) :

在这里插入图片描述

R R R 的自反闭包 G ( r ( R ) ) G(r ( R )) G(r(R)) 关系图 : R R R 的基础上 , 添加有些有序对 , 使 r ( R ) r(R) r(R) 变成 自反 的 最小的二元关系 , 自反的条件是所有的顶点都有环 , 这里为四个顶点都添加环 ;

在这里插入图片描述





三、对称闭包



自反闭包 r ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 对称 的 最小的二元关系

R ⊆ s ( R ) R \subseteq s(R) Rs(R)

s ( R ) s(R) s(R) 是对称的

∀ S ( ( R ⊆ S ∧ S 对 称 ) → r ( R ) ⊆ S ) \forall S ( ( R \subseteq S\land S 对称 ) \to r(R) \subseteq S) S((RSS)r(R)S)


关系 R R R 的关系图 G ( R ) G(R) G(R) :

在这里插入图片描述

R R R 的对称闭包 G ( s ( R ) ) G(s ( R )) G(s(R)) 关系图 : R R R 的基础上 , 添加有些有序对 , 使 s ( R ) s(R) s(R) 变成 对称 的 最小的二元关系 , 对称的条件是 任意两个顶点之间有 0 / 2 0/2 0/2 条有向边 , 0 0 0 条边的不管 , 有 1 1 1 条边的在添加一条反向有向边 ;

在这里插入图片描述





四、传递闭包



自反闭包 r ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 传递 的 最小的二元关系

R ⊆ t ( R ) R \subseteq t(R) Rt(R)

t ( R ) t(R) t(R) 是对称的

∀ S ( ( R ⊆ S ∧ S 传 递 ) → r ( R ) ⊆ S ) \forall S ( ( R \subseteq S\land S 传递 ) \to r(R) \subseteq S) S((RSS)r(R)S)


关系 R R R 的关系图 G ( R ) G(R) G(R) :

在这里插入图片描述

R R R 的对称闭包 G ( t ( R ) ) G(t ( R )) G(t(R)) 关系图 : R R R 的基础上 , 添加有些有序对 , 使 t ( R ) t(R) t(R) 变成 传递 的 最小的二元关系 , 传递的条件是 ① 前提 a → b , b → c a\to b, b \to c ab,bc 成立 , a → c a \to c ac 存在 , 或 ② 前提不成立 , 前提不成立的情况下不管默认就是传递的 , 如果前提成立 , 则必修添加对应的第三条边 ;

在这里插入图片描述

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值