一、关系闭包
包含给定的元素 , 并且 具有指定性质 的 最小的 集合 , 称为关系的闭包 ; 这个指定的性质就是关系 R R R
自反闭包 r ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 自反 的 最小的二元关系
对称闭包 s ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 对称 的 最小的二元关系
传递闭包 t ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成传递 的 最小的二元关系
定义中有三个重要要素 :
- 包含给定元素
- 具有指定性质
- 最小的二元关系
二、自反闭包
自反闭包 r ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 自反 的 最小的二元关系
R ⊆ r ( R ) R \subseteq r(R) R⊆r(R)
r ( R ) r(R) r(R) 是自反的
∀ S ( ( R ⊆ S ∧ S 自 反 ) → r ( R ) ⊆ S ) \forall S ( ( R \subseteq S\land S 自反 ) \to r(R) \subseteq S) ∀S((R⊆S∧S自反)→r(R)⊆S)
关系 R R R 的关系图 G ( R ) G(R) G(R) :
R R R 的自反闭包 G ( r ( R ) ) G(r ( R )) G(r(R)) 关系图 : 在 R R R 的基础上 , 添加有些有序对 , 使 r ( R ) r(R) r(R) 变成 自反 的 最小的二元关系 , 自反的条件是所有的顶点都有环 , 这里为四个顶点都添加环 ;
三、对称闭包
自反闭包 r ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 对称 的 最小的二元关系
R ⊆ s ( R ) R \subseteq s(R) R⊆s(R)
s ( R ) s(R) s(R) 是对称的
∀ S ( ( R ⊆ S ∧ S 对 称 ) → r ( R ) ⊆ S ) \forall S ( ( R \subseteq S\land S 对称 ) \to r(R) \subseteq S) ∀S((R⊆S∧S对称)→r(R)⊆S)
关系 R R R 的关系图 G ( R ) G(R) G(R) :
R R R 的对称闭包 G ( s ( R ) ) G(s ( R )) G(s(R)) 关系图 : 在 R R R 的基础上 , 添加有些有序对 , 使 s ( R ) s(R) s(R) 变成 对称 的 最小的二元关系 , 对称的条件是 任意两个顶点之间有 0 / 2 0/2 0/2 条有向边 , 有 0 0 0 条边的不管 , 有 1 1 1 条边的在添加一条反向有向边 ;
四、传递闭包
自反闭包 r ( R ) : 包含 R R R 关系 , 向 R R R 关系中 , 添加有序对 , 变成 传递 的 最小的二元关系
R ⊆ t ( R ) R \subseteq t(R) R⊆t(R)
t ( R ) t(R) t(R) 是对称的
∀ S ( ( R ⊆ S ∧ S 传 递 ) → r ( R ) ⊆ S ) \forall S ( ( R \subseteq S\land S 传递 ) \to r(R) \subseteq S) ∀S((R⊆S∧S传递)→r(R)⊆S)
关系 R R R 的关系图 G ( R ) G(R) G(R) :
R R R 的对称闭包 G ( t ( R ) ) G(t ( R )) G(t(R)) 关系图 : 在 R R R 的基础上 , 添加有些有序对 , 使 t ( R ) t(R) t(R) 变成 传递 的 最小的二元关系 , 传递的条件是 ① 前提 a → b , b → c a\to b, b \to c a→b,b→c 成立 , a → c a \to c a→c 存在 , 或 ② 前提不成立 , 前提不成立的情况下不管默认就是传递的 , 如果前提成立 , 则必修添加对应的第三条边 ;