【组合数学】组合恒等式 ( 变下项求和 3 组合恒等式 | 变下项求和 4 组合恒等式 | 二项式定理 + 求导 证明组合恒等式 | 使用已知组合恒等式证明组合恒等式 )





一、组合恒等式 ( 变下项求和 ) 变系数求和 1



组合恒等式 ( 变下项求和 ) 变系数求和 :

∑ k = 0 n k ( n k ) = n 2 n − 1 \sum_{k=0}^{n} k \dbinom{n}{k} = n 2^{n-1} k=0nk(kn)=n2n1


k k k 随着求和的项不断变化 , 变化范围 0 0 0 ~ n n n ;



1. 证明方法 :

  • 二项式定理 : 使用 二项式定理 + 求导 可以证明该组合恒等式 ;
  • 组合恒等式代入 : 使用 已知组合恒等式代入 , 消去变系数 ; 即使用之前的 3 3 3 个递推式 , 简单和 , 交错和 , 5 5 5 个组合恒等式 代入 ;




二、组合恒等式 ( 变下项求和 ) 变系数求和 1 证明 ( 二项式定理 + 求导 )



使用二项式定理 + 求导方法证明下面的恒等式 :

∑ k = 0 n k ( n k ) = n 2 n − 1 \sum_{k=0}^{n} k \dbinom{n}{k} = n 2^{n-1} k=0nk(kn)=n2n1



二项式定理 : ( x + y ) n = ∑ k = 0 n ( n k ) x k y n − k (x + y)^n = \sum\limits_{k=0}^n \dbinom{n}{k}x^k y^{n-k} (x+y)n=k=0n(kn)xkynk


1. y = 1 y = 1 y=1 时有该情况 : ( x + 1 ) n = ∑ k = 0 n ( n k ) x k (x +1)^n = \sum\limits_{k=0}^n \dbinom{n}{k}x^k (x+1)n=k=0n(kn)xk , 上述公式中 , 将常数项 k = 0 k= 0 k=0 的情况单独计算出来 , ( n 0 ) x 0 = 1 \dbinom{n}{0}x^0 = 1 (0n)x0=1 , 计算过程如下 :

( x + 1 ) n = ∑ k = 0 n ( n k ) x k = ( n 0 ) x 0 + ∑ k = 1 n ( n k ) x k = 1 + ∑ k = 1 n ( n k ) x k (x +1)^n = \sum\limits_{k=0}^n \dbinom{n}{k}x^k = \dbinom{n}{0}x^0 + \sum\limits_{k=1}^n \dbinom{n}{k}x^k = 1+ \sum\limits_{k=1}^n \dbinom{n}{k}x^k (x+1)n=k=0n(kn)xk=(0n)x0+k=1n(kn)xk=1+k=1n(kn)xk


2. 引入求导 : 要在加和式 ∑ k = 1 n ( n k ) x k \sum\limits_{k=1}^n \dbinom{n}{k}x^k k=1n(kn)xk 中出现 k k k 变化数 , 需要对 x x x 进行求导 ;


这里直接对 ( x + 1 ) n = 1 + ∑ k = 1 n ( n k ) x k (x +1)^n = 1+ \sum\limits_{k=1}^n \dbinom{n}{k}x^k (x+1)n=1+k=1n(kn)xk 等式两边进行求导 ;

( 1 ) 左边组合式 ( 根据下面的幂函数导数公式 计算 ) : ( x + 1 ) n (x +1)^n (x+1)n 导数为 n ( x + 1 ) n − 1 n(x+1)^{n-1} n(x+1)n1

( 2 ) 右边组合式 ( 根据下面的 导数运算规则 和 幂函数导数公式 计算 ) : 1 + ∑ k = 1 n ( n k ) x k 1+ \sum\limits_{k=1}^n \dbinom{n}{k}x^k 1+k=1n(kn)xk 导数为 , 1 1 1 的导数 为 0 0 0 , 加上 ∑ k = 1 n ( n k ) x k \sum\limits_{k=1}^n \dbinom{n}{k}x^k k=1n(kn)xk 的导数 ∑ k = 1 n k ( n k ) x k − 1 \sum\limits_{k=1}^n k \dbinom{n}{k}x^{k-1} k=1nk(kn)xk1 , 最终结果是 ∑ k = 1 n k ( n k ) x k − 1 \sum\limits_{k=1}^n k \dbinom{n}{k}x^{k-1} k=1nk(kn)xk1

( 3 ) 左右两边的导数是相等的 :

n ( x + 1 ) n − 1 = ∑ k = 1 n k ( n k ) x k − 1 n(x+1)^{n-1} = \sum\limits_{k=1}^n k \dbinom{n}{k}x^{k-1} n(x+1)n1=k=1nk(kn)xk1

幂函数求导 : ( 很重要 )

  • 原函数 : y = x n y = x^n y=xn
  • 对应导数 : y ′ = n x n − 1 y' = nx^{n-1} y=nxn1\

/
常数的导数是 0 0 0 ;
/
导数四则运算 : ( u ± v ) ′ = u ′ ± v ′ (u \pm v)' = u' \pm v' (u±v)=u±v
/
参考 : 导数 - 百度百科



3. 求导后的结果如下 :

n ( x + 1 ) n − 1 = ∑ k = 1 n k ( n k ) x k − 1 n(x+1)^{n-1} = \sum\limits_{k=1}^n k \dbinom{n}{k}x^{k-1} n(x+1)n1=k=1nk(kn)xk1

假设求导结果中的 x = 1 x = 1 x=1 , 有如下结果 :

n 2 n − 1 = ∑ k = 1 n k ( n k ) n2^{n-1} = \sum\limits_{k=1}^n k \dbinom{n}{k} n2n1=k=1nk(kn)

k = 0 k = 0 k=0 时 , 有 k ( n k ) = 0 × ( n 0 ) = 0 k \dbinom{n}{k} = 0 \times \dbinom{n}{0} = 0 k(kn)=0×(0n)=0 ,

因此加上 k = 0 k=0 k=0 的情况 , 即 k k k 0 0 0 开始累加 , 也不影响上述结果 :

n 2 n − 1 = ∑ k = 0 n k ( n k ) n2^{n-1} = \sum\limits_{k=0}^n k \dbinom{n}{k} n2n1=k=0nk(kn)





三、组合恒等式 ( 变下项求和 ) 变系数求和 2



组合恒等式 ( 变下项求和 ) 变系数求和 :

∑ k = 0 n k 2 ( n k ) = n ( n + 1 ) 2 n − 2 \sum_{k=0}^{n} k^2 \dbinom{n}{k} = n ( n+1 ) 2^{n-2} k=0nk2(kn)=n(n+1)2n2


k k k 随着求和的项不断变化 , 变化范围 0 0 0 ~ n n n ;


证明方法 :

  • 二项式定理 : 使用 二项式定理 + 求导 可以证明该组合恒等式 ;
  • 组合恒等式代入 : 使用 已知组合恒等式代入 , 消去变系数 ; 即使用之前的 3 3 3 个递推式 , 简单和 , 交错和 , 5 5 5 个组合恒等式 代入 ;




四、组合恒等式 ( 变下项求和 ) 变系数求和 2 证明 ( 使用已知恒等式证明 )



使用 已知恒等式 证明下面的恒等式 :

∑ k = 0 n k 2 ( n k ) = n ( n + 1 ) 2 n − 2 \sum\limits_{k=0}^{n} k^2 \dbinom{n}{k} = n ( n+1 ) 2^{n-2} k=0nk2(kn)=n(n+1)2n2



1. 已知恒等式列举 :

  • ① 递推式 1 1 1 : ( n k ) = ( n n − k ) \dbinom{n}{k} = \dbinom{n}{n-k} (kn)=(nkn)
  • ② 递推式 2 2 2 : ( n k ) = n k ( n − 1 k − 1 ) \dbinom{n}{k} = \dfrac{n}{k} \dbinom{n - 1}{k - 1} (kn)=kn(k1n1)
  • ③ 递推式 3 3 3 帕斯卡 / 杨辉三角公式 : ( n k ) = ( n − 1 k ) + ( n − 1 k − 1 ) \dbinom{n}{k} = \dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1} (kn)=(kn1)+(k1n1)
  • ④ 变下项求和 1 简单和 : ∑ k = 0 n ( n k ) = 2 n \sum_{k=0}^{n}\dbinom{n}{k} = 2^n k=0n(kn)=2n
  • ⑤ 变下项求和 2 交错和 : ∑ k = 0 n ( − 1 ) k ( n k ) = 0 \sum_{k=0}^{n} (-1)^k \dbinom{n}{k} = 0 k=0n(1)k(kn)=0


2. 变下限 : ∑ k = 0 n k 2 ( n k ) \sum\limits_{k=0}^{n} k^2 \dbinom{n}{k} k=0nk2(kn) 开始推导 , k = 0 k=0 k=0 时 , k 2 ( n k ) = 0 k^2 \dbinom{n}{k} = 0 k2(kn)=0 , 可以忽略 , 这里可以从 1 1 1 开始累加 ;


∑ k = 0 n k 2 ( n k ) = ∑ k = 1 n k 2 ( n k ) \sum\limits_{k=0}^{n} k^2 \dbinom{n}{k} = \sum\limits_{k=1}^{n} k^2 \dbinom{n}{k} k=0nk2(kn)=k=1nk2(kn)


使用 ( n k ) = n k ( n − 1 k − 1 ) \dbinom{n}{k} = \dfrac{n}{k} \dbinom{n - 1}{k - 1} (kn)=kn(k1n1) 恒等式替换其中的 ( n k ) \dbinom{n}{k} (kn) :


= ∑ k = 1 n k 2 n k ( n − 1 k − 1 ) = \sum\limits_{k=1}^{n} k^2 \dfrac{n}{k} \dbinom{n - 1}{k - 1} =k=1nk2kn(k1n1)


3. 消去变系数 : 消去一个 k k k 后 , 变成如下公式 :

= ∑ k = 1 n k n ( n − 1 k − 1 ) =\sum\limits_{k=1}^{n} k n \dbinom{n - 1}{k - 1} =k=1nkn(k1n1)


4. 常量外提 : 其中的 n n n 相对于求和来说 , 是一个常量 , 可以提到求和符号之外 :


= n ∑ k = 1 n k ( n − 1 k − 1 ) =n\sum\limits_{k=1}^{n} k \dbinom{n - 1}{k - 1} =nk=1nk(k1n1)


5. 变形及拆解 : 在组合数中有 ( n − 1 k − 1 ) \dbinom{n - 1}{k - 1} (k1n1) , 为了与 k − 1 k-1 k1 进行匹配 , 这里将 k k k 进行变形 , k = ( k − 1 ) + 1 k = (k - 1) + 1 k=(k1)+1 , 可以凑出一个 k − 1 k-1 k1 来 ;


= n ∑ k = 1 n [ ( k − 1 ) + 1 ] ( n − 1 k − 1 ) =n\sum\limits_{k=1}^{n} [( k - 1 ) +1] \dbinom{n - 1}{k - 1} =nk=1n[(k1)+1](k1n1)


利用求和公式 , 将上述式子拆解成两个和式 ,


= n ∑ k = 1 n ( k − 1 ) ( n − 1 k − 1 ) + n ∑ k = 1 n ( n − 1 k − 1 ) =n\sum\limits_{k=1}^{n} ( k - 1 ) \dbinom{n - 1}{k - 1} + n\sum\limits_{k=1}^{n} \dbinom{n - 1}{k - 1} =nk=1n(k1)(k1n1)+nk=1n(k1n1)


6. 第一个组合式转换 : n ∑ k = 1 n ( k − 1 ) ( n − 1 k − 1 ) n\sum\limits_{k=1}^{n} ( k - 1 ) \dbinom{n - 1}{k - 1} nk=1n(k1)(k1n1) 求和 ,

k = 1 k=1 k=1 时 , 组合数的下项 , 加和式中的系数 k − 1 = 0 k-1=0 k1=0 , 将 k k k 作下限的变换 , k k k 取值是 1 1 1 ~ n n n , 则 k − 1 k-1 k1 取值是 0 0 0 ~ ( n − 1 ) (n-1) (n1) ,

相当于使用 k ′ = k − 1 k' = k-1 k=k1 替代之前的 k k k , k ′ k' k 取值范围 0 0 0 ~ ( n − 1 ) (n-1) (n1) ,

因此最终可以变为 n ∑ k ′ = 0 n − 1 ( k ′ ) ( n − 1 k ′ ) n\sum\limits_{k'=0}^{n-1} ( k' ) \dbinom{n - 1}{k'} nk=0n1(k)(kn1)

使用 ∑ k = 0 n k ( n k ) = n 2 n − 1 \sum\limits_{k=0}^{n} k \dbinom{n}{k} = n 2^{n-1} k=0nk(kn)=n2n1 组合恒等式 ,

上述 ∑ k ′ = 0 n − 1 ( k ′ ) ( n − 1 k ′ ) \sum\limits_{k'=0}^{n-1} ( k' ) \dbinom{n - 1}{k'} k=0n1(k)(kn1) 的结果是 ( n − 1 ) 2 n − 2 (n-1)2^{n-2} (n1)2n2 ,

前面乘以 n n n , 最终的 n ∑ k ′ = 0 n − 1 ( k ′ ) ( n − 1 k ′ ) = n ( n − 1 ) 2 n − 2 n\sum\limits_{k'=0}^{n-1} ( k' ) \dbinom{n - 1}{k'} = n(n-1)2^{n-2} nk=0n1(k)(kn1)=n(n1)2n2


7. 第二个组合式转换 : n ∑ k = 1 n ( n − 1 k − 1 ) n\sum\limits_{k=1}^{n} \dbinom{n - 1}{k - 1} nk=1n(k1n1) 该组合式中 k k k 取值是 1 1 1 ~ n n n , 将 k k k 变为从 0 0 0 开始 , 即使用 k ′ = k − 1 k' = k-1 k=k1 替代 k k k ,

则有 n ∑ k ′ = 0 n − 1 ( n − 1 k ′ ) n\sum\limits_{k'=0}^{n-1} \dbinom{n - 1}{k'} nk=0n1(kn1) , 该求和可以转变成基本求和 ,

使用 简单和 组合恒等式 ∑ k = 0 n ( n k ) = 2 n \sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n k=0n(kn)=2n ,

∑ k ′ = 0 n − 1 ( n − 1 k ′ ) \sum\limits_{k'=0}^{n-1} \dbinom{n - 1}{k'} k=0n1(kn1) 就是 2 n − 1 2^{n-1} 2n1 , 前面乘以 n n n , n ∑ k = 1 n ( n − 1 k − 1 ) n\sum\limits_{k=1}^{n} \dbinom{n - 1}{k - 1} nk=1n(k1n1) 就是 n 2 n − 1 n2^{n-1} n2n1


= n ∑ k = 1 n ( k − 1 ) ( n − 1 k − 1 ) + n ∑ k = 1 n ( n − 1 k − 1 ) =n\sum\limits_{k=1}^{n} ( k - 1 ) \dbinom{n - 1}{k - 1} + n\sum\limits_{k=1}^{n} \dbinom{n - 1}{k - 1} =nk=1n(k1)(k1n1)+nk=1n(k1n1)

= n ( n − 1 ) 2 n − 2 + n 2 n − 1 =n(n-1)2^{n-2} + n2^{n-1} =n(n1)2n2+n2n1

= n ( n − 1 ) 2 n − 2 + n 2 × 2 n − 2 =n(n-1)2^{n-2} + n 2 \times2^{n-2} =n(n1)2n2+n2×2n2

= n ( n + 1 ) 2 n − 2 =n(n+1)2^{n-2} =n(n+1)2n2


总结 :
先利用 递推式 , 消掉变系数 k k k ,
将求和的每个式子凑成基本求和公式 , 或 已知求和公式 ,
然后进行求和变限 , 即使用 k ′ = k − 1 k' = k-1 k=k1 替换 k k k ,
通过上述技巧 , 完成证明 ;

相关推荐
程序员的必经之路! 【限时优惠】 现在下单,还享四重好礼: 1、教学课件免费下载 2、课程案例代码免费下载 3、专属VIP学员群免费答疑 4、下单还送800元编程大礼包 【超实用课程内容】  根据《2019-2020年中国开发者调查报告》显示,超83%的开发者都在使用MySQL数据库。使用量大同时,掌握MySQL早已是运维、DBA的必备技能,甚至部分IT开发岗位也要求对数据库使用和原理有深入的了解和掌握。 学习编程,你可能会犹豫选择 C++ 还是 Java;入门数据科学,你可能会纠结于选择 Python 还是 R;但无论如何, MySQL 都是 IT 从业人员不可或缺的技能!   套餐中一共包含2门MySQL数据库必学的核心课程(共98课时)   课程1:《MySQL数据库从入门到实战应用》   课程2:《高性能MySQL实战课》   【哪些人适合学习这门课程?】  1)平时只接触了语言基础,并未学习任何数据库知识的人;  2)对MySQL掌握程度薄弱的人,课程可以让你更好发挥MySQL最佳性能; 3)想修炼更好的MySQL内功,工作中遇到高并发场景可以游刃有余; 4)被面试官打破沙锅问到底的问题问到怀疑人生的应聘者。 【课程主要讲哪些内容?】 课程一:《MySQL数据库从入门到实战应用》 主要从基础篇,SQL语言篇、MySQL进阶篇三个角度展开讲解,帮助大家更加高效的管理MySQL数据库。 课程二:《高性能MySQL实战课》主要从高可用篇、MySQL8.0新特性篇,性能优化篇,面试篇四个角度展开讲解,帮助大家发挥MySQL的最佳性能的优化方法,掌握如何处理海量业务数据和高并发请求 【你能收获到什么?】  1.基础再提高,针对MySQL核心知识点学透,用对; 2.能力再提高,日常工作中的代码换新貌,不怕问题; 3.面试再加分,巴不得面试官打破沙锅问到底,竞争力MAX。 【课程如何观看?】  1、登录CSDN学院 APP 在我的课程中进行学习; 2、移动端:CSDN 学院APP(注意不是CSDN APP哦)  本课程为录播课,课程永久有效观看时长 【资料开放】 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化。  下载方式:电脑登录课程观看页面,点击右侧课件,可进行课程资料的打包下载。
©️2020 CSDN 皮肤主题: 成长之路 设计师:Amelia_0503 返回首页