【组合数学】递推方程 ( 有重根递推方程求解问题 | 问题提出 )





一、有重根递推方程求解问题



有些 递推方程特征方程特征根重根 的情况 , 特征方程解出来的 特征根有一部分是相等的 , 这样就使得 通解中的常数无法获取唯一的值 ;


参考 : 【组合数学】递推方程 ( 通解定义 | 无重根下递推方程通解结构定理 ) 二、无重根下递推方程通解结构定理

在 “无重根下递推方程通解结构定理” 章节中 , 通解要求 方程组中的 系数行列式不等于 0 0 0 , ∏ 1 ≤ i < j ≤ k ( q i − q k ) ≠ 0 \prod\limits_{1 \leq i < j \leq k} ( q_i - q_k ) \not= 0 1i<jk(qiqk)=0 , 如果有两个特征根 q i , q k q_i , q_k qi,qk 相等 , 则上面的 "系数行列式不等于 0 0 0" 便无法实现 ;


如果特征方程有重根 , 就不能使用 “无重根下递推方程公式求法” 进行递推方程的求解 ;


针对有重根的递推方程 , 需要将其 线性无关的元素 都找到 , 线性组合在一起 , 才能得到通解 ;


线性组合 : 将一个解乘以 c 1 c_1 c1 , 另一个解乘以 c 2 c_2 c2 , 相加之后的组合 ;





二、有重根递推方程示例



递推方程 : H ( n ) − 4 H ( n − 1 ) + 4 H ( n − 2 ) = 0 H(n) - 4H(n-1) + 4H(n-2) = 0 H(n)4H(n1)+4H(n2)=0

初值 : H ( 0 ) = 0 , H ( 1 ) = 1 H(0) = 0 , H(1) = 1 H(0)=0,H(1)=1



无重根下递推方程求解完整过程 :

  • 1 . 写出特征方程 :
    • ( 1 ) 递推方程标准形式 : 写出递推方程 标准形式 , 所有项都在等号左边 , 右边是 0 0 0 ;
    • ( 2 ) 特征方程项数 : 确定 特征方程项数 , 与 递推方程项数相同 ;
    • ( 3 ) 特征方程次幂数 : 最高次幂是 特征方程项数 − 1 -1 1 , 最低次幂 0 0 0 ;
    • ( 4 ) 写出 没有系数 的特征方程 ;
    • ( 5 ) 逐位将递推方程的系数 抄写 到特征方程中 ;
  • 2 . 解特征根 :特征方程的特征根解出来 , x = − b ± b 2 − 4 a c 2 a x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} x=2ab±b24ac
  • 3 . 构造递推方程的通解 : 构造 c 1 q 1 n + c 2 q 2 n + ⋯ + c k q k n c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n c1q1n+c2q2n++ckqkn 形式的线性组合 , 该线性组合就是递推方程的解 ;
  • 4 . 求通解中的常数 : 将递推方程初值代入通解 , 得到 k k k k k k 元方程组 , 通过解该方程组 , 得到通解中的常数 ;
    • ( 1 ) 常数代入通解 : 得到最终的递推方程的解 ;


      递推方程 -> 特征方程 -> 特征根 -> 通解 -> 代入初值求通解常数


根据上述求解过程进行求解 :


1 . 特征方程 :

( 1 ) 递推方程标准形式 : 递推方程已经是标准形式 ;

( 2 ) 特征方程项数 : 与 递推方程项数 相同 , 3 3 3 项 ;

( 3 ) 特征方程次幂数 : 最高次幂是 特征方程项数减一 , 3 − 1 = 2 3-1=2 31=2 , 最低次幂 0 0 0 ;

( 4 ) 写出 没有系数 的特征方程 : x 2 + x + 1 = 0 x^2 + x + 1 = 0 x2+x+1=0

( 5 ) 逐位将递推方程的系数 抄写 到特征方程中 ;

1 x 2 + ( − 4 ) x + ( 4 ) 1 = 0 1x^2 + (-4)x + (4)1 = 0 1x2+(4)x+(4)1=0

x 2 − 4 x + 4 = 0 x^2 - 4x + 4 = 0 x24x+4=0


2 . 解特征根 :特征方程的特征根解出来 , x = − b ± b 2 − 4 a c 2 a x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} x=2ab±b24ac

x = 4 ± 16 − 16 2 = 2 x=\cfrac{4 \pm \sqrt{16 - 16}}{2} = 2 x=24±1616 =2

两个特征根都是 2 2 2 , q 1 = 2 , q 2 = 2 q_1=2, q_2 = 2 q1=2,q2=2 ;


3 . 构造递推方程的通解 : 构造 c 1 q 1 n + c 2 q 2 n + ⋯ + c k q k n c_1q_1^n + c_2q_2^n + \cdots + c_kq_k^n c1q1n+c2q2n++ckqkn 形式的线性组合 , 该线性组合就是递推方程的解 ;

通解是 : H ( n ) = c 1 2 n + c 2 2 n = c 2 n H(n) = c_12^n + c_22^n = c2^n H(n)=c12n+c22n=c2n


4 . 求通解中的常数 : 将递推方程初值代入通解 , 得到 k k k k k k 元方程组 , 通过解该方程组 , 得到通解中的常数 ;

c 2 n c2^n c2n 代入到 x 2 − 4 x + 4 = 0 x^2 - 4x + 4 = 0 x24x+4=0 特征方程中 , c c c 是无解的 ;



如果 两个特征根 都是 2 2 2 , 线性相关 , 此时就 无法确定通解中的 c 1 , c 2 c_1, c_2 c1,c2 待定常数 ;

观察 n 2 n n2^n n2n 是解 , 该解与 2 n 2^n 2n 线性无关 , 将上述两个解进行线性组合 ,

c 1 n 2 n + c 2 2 n c_1n2^n + c_22^n c1n2n+c22n 线性组合 , 是递推方程的解 ,

将初值代入 , 可以解出 c 1 , c 2 c_1, c_2 c1,c2 常数的值 ;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值