【数字信号处理】序列傅里叶变换 ( 序列傅里叶变换定义详细分析 | 证明单位复指数序列正交完备性 | 序列存在傅里叶变换的性质 | 序列绝对可和 → 序列傅里叶变换一定存在 )





一、序列傅里叶变换定义详细分析



序列傅里叶变换 SFT , 英文全称 " Sequence Fourier Transform " ;


x ( n ) x(n) x(n) 信号 是 离散 非周期 的 , 那么其 傅里叶变换 一定是 连续 周期 的 ;

x ( n ) x(n) x(n) 是绝对可和的 , 满足如下条件 :

∑ n = − ∞ + ∞ ∣ x ( n ) ∣ < ∞ \sum_{n=-\infty}^{+\infty}|x(n)|< \infty n=+x(n)<

连续周期 的傅里叶变换 , 可以展开成 正交函数线性组合无穷级数和 :

X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n} X(ejω)=n=+x(n)ejωn

就是 x ( n ) x(n) x(n)序列傅里叶变换 SFT ;



ω \omega ω数字角频率 , 单位是 弧度/秒 , 参考 【数字信号处理】基本序列 ( 正弦序列 | 数字角频率 ω | 模拟角频率 Ω | 数字频率 f | 模拟频率 f0 | 采样频率 Fs | 采样周期 T ) 博客 ;

X ( e j ω ) X(e^{j \omega}) X(ejω)实的连续的 变量 ω \omega ω 的 复函数 , 其可以表示成 实部 虚部 ;

X ( e j ω ) = X g ( e j ω ) + j X l ( e j ω ) = ∣ X ( e j ω ) ∣ e j θ ( ω ) X(e^{j\omega}) = X_g(e^{j\omega}) + jX_l(e^{j\omega}) = |X(e^{j\omega})|e^{j\theta(\omega)} X(ejω)=Xg(ejω)+jXl(ejω)=X(ejω)ejθ(ω)

∣ X ( e j ω ) ∣ |X(e^{j\omega})| X(ejω) 模 是其 " 幅频特性 " ,

e j θ ( ω ) e^{j\theta(\omega)} ejθ(ω) 相角 是其 " 相频特性 " ,

其中

θ ( ω ) = arg ⁡ ( X ( e j ω ) ) \theta(\omega) = \arg(X(e^{j\omega})) θ(ω)=arg(X(ejω))






二、证明单位复指数序列正交完备性



证明如下 " 单位复指数序列 "" 正交完备集 "

{ e − j ω n } \{ e^{-j \omega n} \} {ejωn}

其中 n = 0 , ± 1 , ± 2 , ⋯ n = 0 , \pm 1 , \pm2 , \cdots n=0,±1,±2,



证明正交完备性方法 e − j ω n e^{-j \omega n} ejωn 函数 , 乘以该函数的共轭 ( e − j ω n ) ∗ (e^{-j \omega n})^* (ejωn) , 然后在一个周期中求积分 , 计算结果如下 :

∫ − π π e − j ω n ( e − j ω n ) ∗ d ω = { 2 π m = n 0 m ≠ n      ① \int_{-\pi}^\pi e^{-j \omega n} (e^{-j \omega n}) ^* d \omega =\begin{cases}2\pi & m = n \\\\ 0 & m \not= n \end{cases} \ \ \ \ ① ππejωn(ejωn)dω=2π0m=nm=n    


在上述计算结果的前提下 , 推导 x ( n ) x(n) x(n) X ( e j ω ) X( e^{j \omega } ) X(ejω) 之间的关系 :

X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n      ② X( e^{j \omega } ) = \sum_{n = -\infty}^{+\infty}x(n) e^{-j \omega n} \ \ \ \ ② X(ejω)=n=+x(n)ejωn    

将 ② 式 中 , 在等式两边 都乘以 e j ω k e^{j \omega k} ejωk , 然后对 ω \omega ω − π -\pi π ~ π \pi π 之间进行积分得到 :

∫ − π π X ( e j ω ) e j ω k d ω = ∫ − π π ∑ n = − ∞ + ∞ x ( n ) e − j ω n e j ω k d ω \int_{-\pi} ^\pi X( e^{j \omega } )e^{j \omega k} d \omega = \int_{-\pi} ^\pi \sum_{n = -\infty}^{+\infty}x(n) e^{-j \omega n} e^{j \omega k} d \omega ππX(ejω)ejωkdω=ππn=+x(n)ejωnejωkdω

" ∑ \sum 求和 "" ∫ \int 积分 " 交换位置 ,

∫ − π π X ( e j ω ) e j ω k d ω = ∑ n = − ∞ + ∞ x ( n ) ∫ − π π e − j ω n e j ω k d ω \int_{-\pi} ^\pi X( e^{j \omega } )e^{j \omega k} d \omega = \sum_{n = -\infty}^{+\infty}x(n) \int_{-\pi} ^\pi e^{-j \omega n} e^{j \omega k} d \omega ππX(ejω)ejωkdω=n=+x(n)ππejωnejωkdω

根据 ① 式子的推导结果 ,

  • 只有当 n = k n = k n=k 时 , ∫ − π π e − j ω n ( e − j ω n ) ∗ d ω = 2 π \int_{-\pi}^\pi e^{-j \omega n} (e^{-j \omega n}) ^* d \omega = 2\pi ππejωn(ejωn)dω=2π ,
  • n ≠ k n \not= k n=k 时 , ∫ − π π e − j ω n ( e − j ω n ) ∗ d ω = 0 \int_{-\pi}^\pi e^{-j \omega n} (e^{-j \omega n}) ^* d \omega = 0 ππejωn(ejωn)dω=0 ,

∫ − π π X ( e j ω ) e j ω k d ω = { 2 π x ( k ) n = k 0 n ≠ k \int_{-\pi} ^\pi X( e^{j \omega } )e^{j \omega k} d \omega =\begin{cases}2\pi x(k) & n=k \\\\ 0 & n \not= k \end{cases} ππX(ejω)ejωkdω=2πx(k)0n=kn=k

2 π 2\pi 2π 除到左边 , 即可得到下面的式子 :

x ( n ) = 1 2 π ∫ − π π X ( e j ω ) e j ω k d ω x(n) = \cfrac{1}{2\pi} \int_{-\pi} ^\pi X( e^{j \omega } )e^{j \omega k} d \omega x(n)=2π1ππX(ejω)ejωkdω

X ( e j ω ) X(e^{j \omega}) X(ejω) 的 序列傅里叶反变换 ISFT ;





三、序列存在傅里叶变换的性质



x ( n ) x(n) x(n) 序列存在 " 序列傅里叶变换 SFT " 的充分条件是 " x ( n ) x(n) x(n)序列绝对可和 " :

∑ n = − ∞ + ∞ ∣ x ( n ) ∣ < ∞ \sum_{n=-\infty}^{+\infty}|x(n)| < \infty n=+x(n)<

∣ X ( e j ω ) ∣ = ∑ n = − ∞ + ∞ x ( n ) e − j ω n ≤ ∑ n = − ∞ + ∞ ∣ x ( n ) ∣ < ∞ |X( e^{j \omega } )| = \sum_{n = -\infty}^{+\infty}x(n) e^{-j \omega n} \leq \sum_{n=-\infty}^{+\infty}|x(n)| < \infty X(ejω)=n=+x(n)ejωnn=+x(n)<


注意上述是充分条件 ,

  • 如果 " x ( n ) x(n) x(n)序列绝对可和 " , 则 " 序列傅里叶变换 SFT " 一定存在 ;
  • 如果 " 序列傅里叶变换 SFT " 存在 , 不一定 " x ( n ) x(n) x(n)序列绝对可和 " ; 某些 " 非绝对可和序列 " , 引入 广义函数 δ ( ω ) \delta(\omega) δ(ω) 后 , 其 傅里叶变换也存在 ;

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值