【组合数学】生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | 与二项式系数相关 | 与多项式系数相关 )





一. 生成函数 ( 母函数 ) 的定义




1. 生成函数定义



( 1 ) 生成函数的定义


生成函数定义 :

  • 1.假设条件 : a 0 , a 1 , ⋯   , a n a_0 , a_1 , \cdots , a_n a0,a1,,an 是一个数列 ;
  • 2.形式幂级数 : 使用 该 数列形式幂级数 A ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n + ⋯ A(x) = a_0 + a_1x +a_2x^2 + \cdots + a_nx^n + \cdots A(x)=a0+a1x+a2x2++anxn+
  • 3.生成函数 : 称上述 A ( x ) A(x) A(x)数列 a 0 , a 1 , ⋯   , a n a_0 , a_1 , \cdots , a_n a0,a1,,an生成函数 ;



( 2 ) 形式幂级数 ( 参考 )


形式幂级数 :

  • 1.幂级数 : 数学分析 中 重要概念 , 在 指数级的 每一项 均为 与 级数项 序号 n n n 相对应的常数倍的 ( x − a ) (x-a) (xa) n n n 次方 ( n n n 是从 0 0 0 开始计数的整数 , a a a 为常数 ) ;
    • 幂级数用途 : 其 被 作为 基础内容 应用到了 实变函数 , 复变函数 , 等众多领域 中 ;
  • 2.形式幂级数 : 是 数学中 的 抽奖概念 , 从 幂级数抽离出来代数对象 ; 形式幂级数 和 从 多项式 中 剥离出的 多项式环 类似 , 但是 其 允许 无穷多项式 因子 相加 , 但不像 幂级数 一般 要求 研究 是否收敛 和 是否有确定的 取值 ;
    • ① 假设条件 : x x x 是一个符号 , a i ( i = 0 , 1 , 2 , ⋯   ) a_i ( i = 0 , 1 , 2 , \cdots ) ai(i=0,1,2,) 为实数 ;
    • ② 未定元 形式幂级数 : A ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n + ⋯ = ∑ n = 0 ∞ A(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots = \sum_{n=0}^{\infty} A(x)=a0+a1x+a2x2++anxn+=n=0 称为 x x x 的未定元 的 一个 形式幂级数 ;
  • 3.研究重点 : 形式幂级数 中 , x x x 从来 不指定具体数值 , 不关心 收敛 或 发散 , 关注的重点是其 系数序列 a 0 , a 1 , ⋯   , a n a_0 , a_1 , \cdots , a_n a0,a1,,an , 研究形式幂级数 完全可以 归结为 讨论 这些系数序列 ;




2. 生成函数 示例



( 1 ) 生成函数 示例 1 ( a n = ( m n ) a_n = \dbinom{m}{n} an=(nm) )


示例题目 : a n = ( m n ) a_n = \dbinom{m}{n} an=(nm) , m m m 为正整数 , 求数列 { a n } \{a_n\} {an} 的生成函数 A ( x ) A(x) A(x) ;

解 :

① 列出生成函数 :
A ( x ) = ( m 0 ) x 0 + ( m 1 ) x 1 + ( m 2 ) x 2 + ⋯ + ( m n ) x n A(x) = \dbinom{m}{0}x^0 + \dbinom{m}{1}x^1 + \dbinom{m}{2}x^2 + \cdots + \dbinom{m}{n}x^n A(x)=(0m)x0+(1m)x1+(2m)x2++(nm)xn

② 列出其累加生成函数 : A ( x ) = ∑ n = 0 ∞ ( m n ) x n A(x) = \sum_{n=0}^\infty \dbinom{m}{n}x^n A(x)=n=0(nm)xn

③ 当 n n n 大于 m m m , m m m 中 取 n n n , 即 ( m n ) \dbinom{m}{n} (nm) 为 0 , 因此可以 直接计算 从 n = 0 n=0 n=0 n = m n=m n=m 的值 , 即 得到如下步骤 :
A ( x ) = ∑ n = 0 ∞ ( m n ) x n = ∑ n = 0 m ( m n ) x n A(x) = \sum_{n=0}^\infty \dbinom{m}{n}x^n = \sum_{n=0}^m \dbinom{m}{n}x^n A(x)=n=0(nm)xn=n=0m(nm)xn

④ 根据 二项式定理 的推论内容 ( 设 n n n 是正整数 , 对一切 x x x ( 1 + x ) n = ∑ k = 0 n ( n k ) x k (1+x)^n=\sum_{k=0}^n\dbinom{n}{k}x^k (1+x)n=k=0n(kn)xk ) 可以得到
A ( x ) = ∑ n = 0 ∞ ( m n ) x n = ∑ n = 0 m ( m n ) x n = ( 1 + x ) m A(x) = \sum_{n=0}^\infty \dbinom{m}{n}x^n = \sum_{n=0}^m \dbinom{m}{n}x^n = (1 + x)^m A(x)=n=0(nm)xn=n=0m(nm)xn=(1+x)m

⑤ 数列 a n = ( m n ) a_n = \dbinom{m}{n} an=(nm) ( m m m 为正整数 ) , 的 生成函数 为 :
A ( x ) = ( 1 + x ) m A(x) = (1 + x)^m A(x)=(1+x)m

注意 : 生成函数 从属于 一个数列 , 说明生成函数时 , 先说明其数列 , 指明 数列 的 生成函数 是 某个函数 ;




( 2 ) 生成函数 示例 2 ( { k n } \{k^n\} {kn} )


题目 : 给定 正整数 k k k , { k n } \{k^n\} {kn} 的生成函数 ;

① 写出生成函数 : { k n } \{k^n\} {kn} 作为形式幂级数 系数 , 可以得到 如下 等比数列 , 当 x x x 充分小的时候 , 其收敛到 1 1 − k x \frac{1}{1-kx} 1kx1 ;
A ( x ) = k 0 x 0 + k 1 x 1 + k 2 x 2 + k 3 x 3 + ⋯ = 1 1 − k x A(x) = k^0x^0 + k^1x^1 + k^2x^2 + k^3x^3 + \cdots = \frac{1}{1-kx} A(x)=k0x0+k1x1+k2x2+k3x3+=1kx1

{ k n } \{k^n\} {kn} 数列的 生成函数 为 :
A ( x ) = 1 1 − k x A(x) = \frac{1}{1-kx} A(x)=1kx1





2. 牛顿二项式



( 1 ) 牛顿二项式 系数


牛顿二项式 系数 : 组合数的扩展 , C ( m , n ) C(m, n) C(m,n) 上项不再是大于等于 n n n 的数了 , 而是任意实数 ;

  • 1.条件 : 任意 实数 r r r , 和 整数 n n n ;
  • 2.公式 : ( r n ) = { 0 , n < 0 1 , n = 0 r ( r − 1 ) ⋯ ( r − n + 1 ) n ! , n > 0 \dbinom{r}{n} = \begin{cases} 0, & n < 0 \\ 1, & n=0 \\ \cfrac{r(r-1)\cdots(r-n+1)}{n!}, & n>0 \end{cases} (nr)=0,1,n!r(r1)(rn+1),n<0n=0n>0
  • 3.结论 : ( r n ) \dbinom{r}{n} (nr) 没有 组合意义 , 只是 记号 , 称为 牛顿二项式系数 ;

选取问题中 :

  • 不可重复的元素 , 有序的选取 , 对应 集合的排列 ; P ( n , r ) = n ! ( n − r ) ! P(n,r) = \dfrac{n!}{(n-r)!} P(n,r)=(nr)!n!
  • 不可重复的元素 , 无序的选取 , 对应 集合的组合 ; C ( n , r ) = P ( n , r ) r ! = n ! r ! ( n − r ) ! C(n,r) = \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!} C(n,r)=r!P(n,r)=r!(nr)!n!
  • 可重复的元素 , 有序的选取 , 对应 多重集的排列 ; 全 排 列 = n ! n 1 ! n 2 ! ⋯ n k ! 全排列 = \cfrac{n!}{n_1! n_2! \cdots n_k!} =n1!n2!nk!n! , 非全排列 k r ,    r ≤ n i k^r , \ \ r\leq n_i kr,  rni
  • 可重复的元素 , 无序的选取 , 对应 多重集的组合 ; N = C ( k + r − 1 , r ) N= C(k + r - 1, r) N=C(k+r1,r)



( 2 ) 牛顿二项式 定理


牛顿二项式定理 :

  • 1.条件 : α \alpha α 为 实数 , 对于一切 x , y x , y x,y , 并且 ∣ x y ∣ < 1 \left| \frac{x}{y} \right| < 1 yx<1 ;
  • 2.结论 : ( x + y ) α = ∑ n = 0 ∞ ( α n ) x α y α − n ( x + y ) ^ \alpha = \sum^{\infty}_{n=0}\dbinom{\alpha}{n}x^\alpha y^{\alpha - n} (x+y)α=n=0(nα)xαyαn 其中 ( α n ) = α ( α − 1 ) ⋯ ( α − n + 1 ) n ! \dbinom{\alpha}{n} = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} (nα)=n!α(α1)(αn+1)
  • 3.与 二项式定理 关系 : 牛顿二项式定理 是 二项式定理 的 推广 , 二项式定理是 牛顿二项式定理 的 特例 ;
    • α = m \alpha = m α=m , 且 m m m 为正整数时 , n > m n > m n>m 时 , ( m n ) = 0 \dbinom{m}{n}=0 (nm)=0 , 因此只需要考虑 n < m n<m n<m 的情况 , 此时 牛顿二项式定理 变成 二项式定理 : ( x + y ) m = ∑ n = 0 m ( m n ) x m y m − n ( x + y ) ^ m = \sum^{m}_{n=0}\dbinom{m}{n}x^m y^{m - n} (x+y)m=n=0m(nm)xmymn
      ( 1 + x ) m = ∑ n = 0 m ( m n ) x m y m − n ( 1 + x ) ^ m = \sum^{m}_{n=0}\dbinom{m}{n}x^m y^{m - n} (1+x)m=n=0m(nm)xmymn





二. 常用 生成函数 ( 重要 )




1. 与常数相关的生成函数



( 1 ) { 1 n } \{1^n\} {1n} 的 生成函数


常用生成函数 :

  • 1.形式幂级数 ( 数列 ) : { a n } \{a_n\} {an} , a n = 1 n a_n = 1^n an=1n ;
  • 2.生成函数展开 :

A ( x ) = ∑ n = 0 ∞ x n = 1 1 − x \begin{aligned} A(x) & = \sum_{n=0}^{\infty} x^n \\ & = \frac{1}{1-x} \end{aligned} A(x)=n=0xn=1x1




( 2 ) { ( − 1 ) n } \{(-1)^n\} {(1)n} 的 生成函数


常用生成函数 :

  • 1.形式幂级数 ( 数列 ) : { a n } \{a_n\} {an} , a n = ( − 1 ) n a_n = (-1)^n an=(1)n ;
  • 2.生成函数展开 :

A ( x ) = ∑ n = 0 ∞ ( − 1 ) n x n = 1 1 + x \begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n x^n \\ & = \frac{1}{1+x} \end{aligned} A(x)=n=0(1)nxn=1+x1




( 3 ) { k n } \{k^n\} {kn} ( k k k为正整数 ) 的 生成函数


常用生成函数 :

  • 1.形式幂级数 ( 数列 ) : { a n } \{a_n\} {an} , a n = k n a_n = k^n an=kn , k k k 为正整数 ;
  • 2.生成函数展开 :

A ( x ) = ∑ n = 0 ∞ k n x n = 1 1 − k x \begin{aligned} A(x) & = \sum_{n=0}^{\infty} k^n x^n \\ & = \frac{1}{1-kx} \end{aligned} A(x)=n=0knxn=1kx1





2. 与 二项式系数 相关的生成函数



( 1 ) { ( m n ) } \{\dbinom{m}{n}\} {(nm)} 的 生成函数


常用生成函数 :

  • 1.形式幂级数 ( 数列 ) : { a n } \{a_n\} {an} , a n = ( m n ) a_n = \dbinom{m}{n} an=(nm)
  • 2.生成函数展开 :

A ( x ) = ∑ n = 0 ∞ ( m n ) x n = ( 1 + x ) m \begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m}{n} x^n \\ & = ( 1 + x ) ^m \end{aligned} A(x)=n=0(nm)xn=(1+x)m





3. 与 组合数 相关的生成函数





( 1 ) { ( m + n − 1 n ) } \{\dbinom{m+n-1}{n}\} {(nm+n1)} 的 生成函数


常用生成函数 :

  • 1.形式幂级数 ( 数列 ) : { a n } \{a_n\} {an} , a n = ( m + n − 1 n ) a_n = \dbinom{m+n-1}{n} an=(nm+n1) , m , n m,n m,n 为正整数 ;
  • 2.生成函数展开 :

A ( x ) = ∑ n = 0 ∞ ( m + n − 1 n ) x n = 1 ( 1 − x ) m \begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m+n-1}{n} x^n \\ & = \frac{1}{{(1-x)}^m} \end{aligned} A(x)=n=0(nm+n1)xn=(1x)m1




( 2 ) { ( − 1 ) n ( m + n − 1 n ) } \{(-1)^n \dbinom{m+n-1}{n}\} {(1)n(nm+n1)} 的 生成函数


常用生成函数 :

  • 1.形式幂级数 ( 数列 ) : { a n } \{a_n\} {an} , a n = ( − 1 ) n ( m + n − 1 n ) a_n = (-1)^n \dbinom{m+n-1}{n} an=(1)n(nm+n1) , m , n m,n m,n 为正整数 ;
  • 2.生成函数展开 :

A ( x ) = ∑ n = 0 ∞ ( − 1 ) n ( m + n − 1 n ) x n = 1 ( 1 + x ) m \begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n \dbinom{m+n-1}{n} x^n \\ & = \frac{1}{{(1+x)}^m} \end{aligned} A(x)=n=0(1)n(nm+n1)xn=(1+x)m1




( 3 ) { ( n + 1 1 ) } \{ \dbinom{n+1}{1}\} {(1n+1)} 的 生成函数


常用生成函数 :

  • 1.形式幂级数 ( 数列 ) : { a n } \{a_n\} {an} , a n = ( n + 1 n ) a_n = \dbinom{n+1}{n} an=(nn+1) , n n n 为正整数 ;
  • 2.生成函数展开 :

A ( x ) = ∑ n = 0 ∞ ( n + 1 n ) x n = ∑ n = 0 ∞ ( n + 1 ) x n = 1 ( 1 − x ) 2 \begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{n+1}{n} x^n \\ & = \sum_{n=0}^{\infty} (n+1) x^n \\ & = \frac{1}{{(1-x)}^2} \end{aligned} A(x)=n=0(nn+1)xn=n=0(n+1)xn=(1x)21


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值