1-0:Microsoft VC++产生随机数的原理:
Srand ( )和Rand( )函数。它本质上是利用线性同余法,y=ax+b(mod m)。其中a,b,m都是常数。因此rand的产生决定于x,x被称为Seed。Seed需要程序中设定,一般情况下取系统时间作为种子。它产生的随机数之间的相关性很小,取值范围是0—32767(int),即双字节(16位数),若用unsigned int 双字节是65535,四字节是4294967295,一般可以满足要求。
1-1:线性同余法:
其中M是模数,A是乘数,C是增量,为初始值,当C=0时,称此算法为乘同余法;若C≠0,则称算法为混合同余法,当C取不为零的适当数值时,有一些优点,但优点并不突出,故常取C=0。模M大小是发生器周期长短的主要标志,常见有M为素数,取A为M的原根,则周期T=M-1。例如:
a=1220703125
a=32719 (程序中用此组数)
a=16807
代码:
void main( )
{
const int n=100;
double a=32719,m=1,f[n+1],g[n],seed;
m=pow(2,31);
cout<<"设置m值为 "<<m-1<<endl;
cout<<"输入种子"<<endl; //输入种子
cin>>seed;
f[0]=seed;
for(int i=1;i<=n;i++) //线性同余法生成随机数
{
f[i]=fmod((a*f[i-1]),(m-1));
g[i-1]=f[i]/(m-1);
cout.setf(ios::fixed);cout.precision(6); //设置输出精度
cout<<i<<" "<<'\t'<<g[i-1]<<endl;
}
}
结果分析:统计数据的平均值为:0.485653
统计数据的方差为:0.320576
1-2:人字映射
递推公式
就是有名的混沌映射中的“人字映射”或称“帐篷映射”,它的非周期轨道点的分布密度函数:人字映射与线性同余法结合,可产生统计性质优良的均匀随机数。
for(int i=1;i<=n;i++) //线性同余法生成随机数
{
f[i]=fmod((a*f[i-1]),m);
if(f[i]<=m/2) //与人字映射结合生成随机数
{
f[i]=2*f[i];
}
else
{
f[i]=2*(m-f[i])+1;
}
1-3:平方取中法——冯•诺伊曼
1946年前后,由冯•诺伊曼提出,他的办法是去前面的随机数的平方,并抽取中部的数字。例如要生成10位数字,而且先前的值是5772156649,平方后得到33317792380594909201,所以下一个数是7923805949。
for(j=1;j<=n;j++)
{
i[j]=i[j-1]*i[j-1];
i[j]=i[j]/pow(10,5);
i[j]=fmod(i[j],pow(10,10));
g[j]=i[j]/pow(10,10);
cout.setf(ios::fixed);cout.precision(6); //设置输出精度
cout<<j<<'\t'<<g[j]<<endl;
}
1-4 任意分布随机数的生成
对于任意分布的随机数的生成方法可以运用反函数法和舍选法产生。
(1)均匀分布随机数的生成
大家都知道,随机数在各个方面都有很大的作用,在vc的环境下,为我们提供了库函数rand()来产生一个随机的整数。该随机数是平均在0~RAND_MAX之间平均分布的,RAND_MAX是一个常量,在VC6.0环境下是这样定义的:
双击代码全选 | |
1 |
|
它是一个short型数据的最大值,如果要产生一个浮点型的随机数,可以将rand()/1000.0这样就得到一个0~32.767之间平均分布的随机浮点数。如果要使得范围大一点,那么可以通过产生几个随机数的线性组合来实现任意范围内的平均分布的随机数。例如要产生-1000~1000之间的精度为四位小数的平均分布的随机数可以这样来实现。先产生一个0到10000之间的随机整数。方法如下:
双击代码全选 | |
1 |
|
然后保留四位小数产生0~1之间的随机小数:
双击代码全选 | |
1 |
|
然后通过线性组合就可以实现任意范围内的随机数的产生,要实现-1000~1000内的平均分布的随机数可以这样做:
双击代码全选 | |
1 |
|
则dValue就是所要的值。
到现在为止,你或许以为一切工作都已经完成了,其实不然,仔细一看,你会发现有问题的,上面的式子化简后就变为:
双击代码全选 | |
1 |
|
这样一来,产生的随机数范围是正确的,但是精度不正确了,变成了只有一位正确的小数的随机数了,后面三位的小数都是零,显然不是我们要求的,什么原因呢,又怎么办呢。
先找原因,rand()产生的随机数分辨率为32767,两个就是65534,而经过求余后分辨度还要减小为10000,两个就是20000而要求的分辨率为1000*10000*2=20000000,显然远远不够。下面提供的方法可以实现正确的结果:
双击代码全选 | |
1 2 3 |
|
则dValue就是所要求的结果。在下面的函数中可以实现产生一个在一个区间之内的平均分布的随机数,精度是4位小数。
双击代码全选 | |
1 2 3 4 5 6 7 8 9 |
|
但是有一个值得注意的问题,随机数的产生需要有一个随机的种子,因为用计算机产生的随机数是通过递推的方法得来的,必须有一个初始值,也就是通常所说的随机种子,如果不对随机种子进行初始化,那么计算机有一个确省的随机种子,这样每次递推的结果就完全相同了,因此需要在每次程序运行时对随机种子进行初始化,在vc中的方法是调用srand(int)这个函数,其参数就是随机种子,但是如果给一个常量,则得到的随机序列就完全相同了,因此可以使用系统的时间来作为随机种子,因为系统时间可以保证它的随机性。
调用方法是srand(GetTickCount()),但是又不能在每次调用rand()的时候都用srand(GetTickCount())来初始化,因为现在计算机运行时间比较快,当连续调用rand()时,系统的时间还没有更新,所以得到的随机种子在一段时间内是完全相同的,因此一般只在进行一次大批随机数产生之前进行一次随机种子的初始化。下面的代码产生了400个在-1~1之间的平均分布的随机数。
双击代码全选 | |
1 2 3 4 5 6 |
|
//产生服从指数分布的精度为precision的随机数
extern "C" double _stdcall Exponent( double lamb , double precision /*= 0.01*/ )
{
//用指数分布反函数法产生指数分布随机数
double uniNum = Uniform( 0 , 1 , precision ) ;//产生[0,1]之间随机分布的数
if( abs( lamb ) < 1e-6 )
return -1.0 ;//无效数字
double expNum = 0.0 ;
if( abs( uniNum ) < 1e-6 )
expNum = 65536.0 ;
else
expNum = log( uniNum )/(- lamb ) ;//反函数
return ( expNum ) ;
}
从图中可以看出,在μ附近的概率密度大,远离μ的地方概率密度小,我们要产生的随机数要服从这种分布,就是要使产生的随机数在μ附近的概率要大,远离μ处小,怎样保证这一点呢,可以采用如下的方法:在图2的大矩形中随机产生点,这些点是平均分布的,如果产生的点落在概率密度曲线的下方,则认为产生的点是符合要求的,将它们保留,如果在概率密度曲线的上方,则认为这些点不合格,将它们去处。如果随机产生了一大批在整个矩形中均匀分布的点,那么被保留下来的点的横坐标就服从了正态分布。可以设想,由于在μ处的f(x)的值比较大,理所当然的在μ附近的点个数要多,远离μ处的少,这从面积上就可以看出来。我们要产生的随机数就是这里的横坐标。
基于以上思想,我们可以用程序实现在一定范围内服从正态分布的随机数。程序如下:
双击代码全选 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
1 ) #include <stdlib.h>
#include <stdio.h>
#include<stdio.h>
#include <time.h>
swap(int *pm,int *pn) /*必须用指针进行交换 */
{
int temp;
temp=*pm;
*pm=*pn;
*pn=temp;
}
int main(void)
{
int i,a[513];
/*int *pa,*pb;*/
srand( (unsigned)time( NULL ) ); /*定义这个可以产生不同的随机数*/
for(i=1; i<=512; i++){a[i]=i;printf("%4d",a[i]);}
for(i=512; i>=1; i--)
{
/* pa=&a[i]; pb=&a[rand()%i+1];*/
swap(&a[i], &a[rand()%i+1]); /*加一是从一到i的随机,就不会包含0*/
/*不用再定义指针,这样结论是一样的*/
}
printf("\n") ;
for(i=1; i<=64; i++)
printf("%4d",a[i] );
getch(); /*wintc的输出*/
}
2)
#include <stdlib.h>
#include <stdio.h>
#include<stdio.h>
int main(void)
{
int a[100]={0}; int i,m;
for(i=1; i<=99; ++i)
printf("%4d",a[i] );
srand( (unsigned)time( NULL ) );
for(i=1; i<=99; i++)
{
while(a[m=rand()%100+1]);
a[m] = i;
}
for(i=1; i<=99; ++i)
printf("%4d",a[i] );
getch();
}