- 博客(37)
- 收藏
- 关注
原创 Efficient localization method based on RSSI for AP clusters
【代码】Efficient localization method based on RSSI for AP clusters。
2023-08-08 20:58:28 309
原创 如何计算遮蔽角
求解遮蔽角,首先,需要获得雷达站的站心坐标系中所求方位上的高程在该坐标系中的高程随距离的变化。然后,计算各点相对雷达天线的俯仰角。由于遮蔽的存在,远处较小俯仰角将由近处的较大俯仰角所替代,从而获得遮蔽角随距离的变化情况。
2023-04-05 21:47:56 5713
原创 在Java中如何将反映高程的数组转换成BufferedImage
若将反映高程信息的数组以图像的形式呈现在JPanel中时,需要将相应的数组转换成BufferedImage类型的变量,而后将BufferedImage类型变量绘制在JPanel中。
2023-04-02 22:47:44 267
原创 获取显示区域所涉及的数据文件的经纬度编号
如果显示区域采用的是兰勃特(Lambert)投影,由于显示区域内的经线呈发散形态,纬线呈弧形,导致确定显示区域的经纬度变得复杂。本文主要针对采用兰勃特投影区域来讨论如何获得相应数据文件的经纬度编号。
2023-04-02 22:22:48 384 1
原创 在Java GDAL环境中提取指定经纬度的高程数据
根据经纬度确定数据文件,确定该经纬度点所对于的栅格数据的行号与列号,读取相应数据文件中对应行与列处的高程值
2023-03-03 14:46:56 2534 2
原创 2023年覆盖范围分析任务
计划以布设在特定地点的空管二次监视雷达为例,讨论获得其不同高度层覆盖范围的计算方法。相应的方法,也可以应用于通信、导航等无线设备的有效工作范围的计算上。
2023-02-24 11:40:00 385 1
原创 按方位提取高程数据的方法
1. 问题的描述根据经过Lambert变换后显示的地图设置方位,以正北方向为零度,顺时针旋转的角度为相应的方位角。以站址为中心,沿相应的方位提取高程数据,形成某指定方位的随距离变化的高程数据。所获得的高程数据尚未考虑地球曲率的影响,为引入地球曲率的影响,则需要数据进行相应的坐标变换,以获得按站址坐标系描述的高程信息。2. 沿方位的采样点坐标的选取假设屏幕显示区域的像素数为需要考虑方位方向上的采样点的提取。...
2022-04-08 19:34:41 1377
原创 生成给定功率谱密度的随机过程
1. 基本原理对于给定的任意非负函数,一定可以确定一个具有功率谱为的随机过程。不妨考虑随机过程式中,为实常数,服从概率密度函数为的随机变量,服从内均匀分布。易知,随机过程是宽平稳随机过程,因为其自相关函数为因此,故因为,若是服从概率密度函数为的随机变量,则随机过程的功率谱为。2.示例给定函数请生成一个随机过程,使其功率谱为。解:首先求解参数所以,概率密度函数为因此,根据概率密度函数生成随机数(生成方法参见:反函数...
2022-03-29 15:48:29 1426 1
原创 反函数法生成服从特定概率密度函数的随机数
1.基本概念假设随机变量服从范围内的均匀分布,即,如果则随机变量的累积分布函数为。证明:算法步骤:生成一个在范围内服从均匀分布的随机数 设为指定随机变量的累积分布函数,则即为指定分布的随机数。2.示例请生成概率密度函数为的随机变量的随机数。解:首先求该随机变量的累积分布函数令,则因此,生成范围内服从均匀分布的随机数,代入上式,即可获得服从概率密度函数的随机变量的随机数。3. 参考资料https://blog.csdn....
2022-03-29 15:09:25 2665
原创 兰勃特等角圆锥(Lambert Conformal Conic)投影正反变换
兰勃特等角圆锥投影是设想用一个正圆锥切于或割于球面,应用等角条件将地球面投影到圆锥面上,然后沿一母线展开成平面。
2022-03-21 22:34:46 11068 3
原创 如何获取特定经纬度在SRTM3中的高程值
1. 问题描述进行地理信息处理时,通常需要获得已知经纬度处在SRTM3文件中的高程值,这需要首先根据该经纬度来确定相应SRTM3的文件名,其次,确定该经纬度在相应文件中的行与列,即相应的栅格点。这里需要注意的是,由于给定的经纬度的值通常不会恰巧在栅格点上,因此,可以考虑距离最近的栅格点的值作为该经纬度的高程。最后,采用相应的软件将相应点的数据读出即可。2. 根据经纬度确定SRTM3文件名称SRTM3的数据组织方式为:每5度经纬度方格划分为一个文件,文件内包含6000x6000个采样点的高程数据。
2022-03-20 00:11:57 1572 2
原创 地理高程数据SRTM3简介
1.SRTM简介SRTM(Shuttle Radar Topography Mission,航天飞机雷达地形测绘使命)是美国太空总署(NASA)和国防部国家测绘局(NIMA)以及德国与意大利航天机构共同合作完成联合测量,由美国发射的“奋进”号航天飞机上搭载SRTM系统完成。通过航天飞机的天线以及从航天飞机货舱伸出去的另一副雷达天线接收从地球表面各城市、田野、山脉、森林以及其他地形反射传回的雷达信号。两个雷达收到信号能够被合成为像三维立体电影或照片一样清晰逼真的地形图。美国“奋进号”航天飞机于2.
2022-03-19 21:43:30 9540 2
原创 维纳—辛钦(Winner-Khitchine)定理的证明
维纳—辛钦(Winner-Khitchine)定理宽平稳随机过程的功率谱密度是其自相关函数的Fourier变换,
2022-03-17 11:51:31 7511
原创 帕塞瓦尔定理(Parseval‘s theorem)的证明
帕塞瓦尔定理(Parseval's theorem)表明了信号在时域和频域上的能量相等。
2022-03-16 21:46:47 16931 7
原创 概率论的源起
十七世纪欧洲的贵族盛行赌博之风,法国有一位叫德·梅雷的贵族,在掷骰子的游戏之余,也思考一点相关的数学问题,苦思不得其解时,便向帕斯卡请教。1654年,他向帕斯卡请教了一个亲身经历的“分赌注问题”。故事大概如此:梅雷和赌友各自出32枚金币,共64枚金币作为赌注,双方以掷骰子为赌博方式: 如果结果出现“6”, 则梅雷赢1分;如果结果出现“4”,则对方赢1分。双方谁先得到10分,谁就赢得全部赌注。赌博如此进行了一段时间,梅雷已得8分,对方也得了7分。但这时,梅雷接到紧急命令,要立即陪国王接见外宾,只好中断
2021-09-04 11:56:50 953
原创 贝特朗(Bertrand)悖论
几何概型抛硬币、掷骰子之类游戏中涉及的概率,是离散的,抛丢结果的数目有限(2或6)。如果硬币或骰子是对称的,每个基本结果发生的概率相等。这种随机事件被称为古典概型。数学家们将古典概型推广到某些几何问题中,使得随机变量的结果变成了连续的,数目成为了无限多,这种随机事件被称之为“几何概型”。古典概型向几何概型的推广,类似于有限多个整数向“实数域”的推广。了解几何概型很重要,因为与之相关的“测度”概念(长度、面积等),是现代概率论的基础。几何概型和古典概型都使用“等概率假设”。然而,只要涉及到无穷
2021-09-04 10:22:50 5397
原创 JAVA编程方面问题的解答
线程问题Java多线程实现中Thread与Runnable之间的区别https://www.cnblogs.com/albertrui/p/8380017.html
2021-07-27 13:48:55 126
原创 概率分布:二项分布
二项分布二项分布(binomial distribution)就是在重复n次独立的伯努利试验(Bernoulli experiment)中,所期望结果出现次数的概率分布。伯努利试验的特点:每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立 每次试验中事件发生的概率是相同的 各次试验的事件相互之间独立重复n次独立的伯努利试验形成二项分布(高尔顿板)高尔顿板丨图片来源:维基百科从最上方的节点往下,是几排交错排列的钉子。从入口扔下的小球撞上一个钉子,就像触网的乒
2021-07-12 14:18:43 14294 4
原创 2021年学生课程成果
简介建模与仿真课程主要是由教师带领学生围绕一个特定的专题,利用相关的编程语言实现专题所设定的目标。空管二次雷达覆盖范围分析是执行了5年的专题,每届学生均能够在规定的时限内完成本专题所规定的任务,且会有着各种各样不同的收获。2021年,本届学生利用近一个学期的时间完成了以拉萨为中心的空管二次雷达覆盖范围的分析,并在课程执行过程中,能够利用各种已知信息对团队的成果进行验证。下面对学生所取得的成果进行展示。学生成果开心胖子组渴望翻身的咸鱼玛卡巴卡四个臭皮匠幼儿园
2021-07-11 23:10:55 157
原创 Python TsFresh特征的Java实现——spkt_welch_density
TsFresh(TimeSeries Fresh)是一个Python第三方工具包。它可以方便地对时间序列数据进行处理,获得大量的特征。这些特征可以用以训练分类器,以高效地实现对时间序列数据的分类、识别等。然而,在工程实现时,更多地是采用Java等语言,这需要利用Java实现对TsFresh的特征进行直接计算,故需要对TsFresh的某些特征进行深入地分析,并在Java语言下实现。特征cwt_coefficients简介命令格式:cwt_coefficients(x, param)计算基于Ric.
2021-06-08 13:28:57 314
原创 Python TsFresh特征的Java实现——cwt_coefficients
TsFresh(TimeSeries Fresh)是一个Python第三方工具包。它可以方便地对时间序列数据进行处理,获得大量的特征。这些特征可以用以训练分类器,以高效地实现对时间序列数据的分类、识别等。然而,在工程实现时,更多地是采用Java等语言,这需要利用Java实现对TsFresh的特征进行直接计算,故需要对TsFresh的某些特征进行深入地分析,并在Java语言下实现。特征max_langevin_fixed_point简介命令格式:max_langevin_fixed_point(x,
2021-06-07 13:42:44 552
原创 Python TsFresh特征的Java实现——index_mass_quantile
TsFresh(TimeSeries Fresh)是一个Python第三方工具包。它可以方便地对时间序列数据进行处理,获得大量的特征。这些特征可以用以训练分类器,以高效地实现对时间序列数据的分类、识别等。然而,在工程实现时,更多地是采用Java等语言,这需要利用Java实现对TsFresh的特征进行直接计算,故需要对TsFresh的某些特征进行深入地分析,并在Java语言下实现。特征max_langevin_fixed_point简介命令格式:max_langevin_fixed_point(x, r
2021-06-06 09:54:03 263
原创 Python TsFresh特征的Java实现——max_langevin_fixed_point
TsFresh(TimeSeries Fresh)是一个Python第三方工具包。它可以方便地对时间序列数据进行处理,获得大量的特征。这些特征可以用以训练分类器,以高效地实现对时间序列数据的分类、识别等。然而,在工程实现时,更多地是采用Java等语言,这需要利用Java实现对TsFresh的特征进行直接计算,故需要对TsFresh的某些特征进行深入地分析,并在Java语言下实现。特征change_quantiles简介命令格式:change_quantiles(x, ql, qh, isabs, f
2021-06-05 23:05:07 331
原创 Python TsFresh特征的Java实现——change_quantiles
Tsfresh(TimeSeries Fresh)是一个Python第三方工具包。 它自动计算大量的时间序列数据的特征。此外,该包包含评估这些特征对于回归或分类任务的解释能力和重要性的方法。无论是基于时序数据的分类还是预测,作为特征提取的工具,tsfresh将会是一个不错的选择。...
2021-06-05 16:31:07 336
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人