机器学习的正确率、召回率

其实正确率、召回率的公式很简单,但是就是理解起来不是特别的清晰。

正确率:P=\frac{T P}{T P+F P}

召回率:P=\frac{T P}{T P+F N}

TP和TN都表示检测对了:

TP是真阳,检测是阳性,实际上也是阳性。

TN是真阴,检测是阴性,实际上也是阴性。

FP和FN都表示检测错了:

FP是假阳,检测是阳性,但是实际上是阴性。

FN是假阴,检测是阴性,但是实际上是阳性。

 

换句话说就是:

正确率:你找对的例子数/你找的所有你认为是对的例子数(你有可能把一些错的例子当对的)
召回率:你找对的例子数/你找的所有真实是对的例子数 (你可能把一些对的例子当错的)

下面是我个人的理解:

召回率表示了你的预测的谨慎性,你只在乎自己真正找对了多少,而不在乎自己找错的情况,你宁愿把一些对的当错的。

而正确率你会关注自己找错了多少,当你把错的当对的情况特别多,这个是十分要命的,正确率就会下降的厉害。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值