机器学习中的准确率,精确率和召回率

文章探讨了在地震预测和人脸识别支付场景中,精确率与召回率的重要性。地震预测中,主要追求高召回率以避免漏报;而人脸识别支付则注重精确率,防止误检。两者在实际应用中需根据需求选择优化指标。
摘要由CSDN通过智能技术生成

准确率(正确率):Accuracy
在这里插入图片描述
精确率(查准率):Precision
在这里插入图片描述
召回率(查全率):Recall
在这里插入图片描述
精确率:分母是预测到的正类,精确率的提出是让模型的现有预测结果尽可能不出错(宁愿漏检,也不能让现有的预测有错)
召回率:分母是原本的正类,召回率的提出是让模型预测到所有想被预测到的样本(就算多预测一些错的,也能接受)

以地震的预测为例,如果需要一个地震预测模型(某一天地震为正样本,不地震为负样本),预测接下来100天的地震发生情况。
假设已知第50和51天会发生地震,其余的1-49和51-100天不会发生地震,由于精确率和召回率不可兼得,所以面临的选择是提升其中一个率。
(1)保证精确率,为了不预测出错,预测了第50天可能地震,此时:
精确率:1/1 = 100%;召回率:1/2 = 50%
虽然有一次地震没预测到,但是所有的预测结果都是正确的。
(2)保证召回率,为了不漏报,预测了第30、50、51、60天可能地震,此时:
精确率:2/4 = 50%; 召回率:2/2 = 100%
虽然有两次预测错误,但是所有可能发生地震的情况都被预测到了。

不同应用场景下,需要的评价标准不一样,所以会有不同的率,例如:
预测地震–不能接受漏报;人脸识别支付–不能接受误检
基于以上需求,预测地震:主要提升召回率,更倾向于宁愿多预测一些错的也不能漏检;人脸识别支付:主要提升精确率,更倾向于不能出现错误的预测。

  • 9
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设我们有一个二分类问题,分类标签为“正类”和“负类”。我们使用一个机器学习模型来预测一个样本属于哪一类,然后将模型的预测结果与实际标签进行比较。在这种情况下,“准确率”、“召回率”和“精确率”的含义如下: - 准确率(Accuracy):指分类器正确分类的样本数占总样本数的比例。即准确率 = (TP + TN) / (TP + TN + FP + FN),其TP表示真正例数(即正类样本被正确分类为正类),TN表示真负例数(即负类样本被正确分类为负类),FP表示假正例数(即负类样本被错误分类为正类),FN表示假负例数(即正类样本被错误分类为负类)。 - 召回率(Recall):指分类器正确分类的正类样本数占所有正类样本数的比例。即召回率 = TP / (TP + FN)。 - 精确率(Precision):指分类器正确分类的正类样本数占所有被分类为正类的样本数的比例。即精确率 = TP / (TP + FP)。 举个例子,假设我们有100个样本,其60个是正类,40个是负类。我们使用一个二分类模型进行预测,结果如下: - 预测结果为正类的样本有50个,其有40个是真正例,10个是假正例; - 预测结果为负类的样本有50个,其有45个是真负例,5个是假负例。 那么,我们可以计算出该模型的准确率召回率精确率如下: - 准确率 = (40 + 45) / 100 = 0.85(即85%的样本被正确分类); - 召回率 = 40 / 60 = 0.67(即67%的正类样本被正确分类); - 精确率 = 40 / 50 = 0.8(即80%的被分类为正类的样本是真正例)。 这些指标可以帮助我们评估分类器的性能和优化模型的参数。例如,如果我们希望提高召回率,我们可以尝试调整模型的阈值,使其更容易将正类样本分类为正类,即可提高召回率,但同时可能会降低精确率。因此,对于不同的应用场景,需要根据实际需求来综合考虑这些指标。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值