DeepSeek-R1蒸馏小模型,用Ollama在本地运行跑起来

# DeepSeek-R1横空出世,超越OpenAI-o1,教你用Ollama跑起来

使用Ollama在本地运行DeepSeek-R1的操作指南。

DeepSeek-R1作为第一代推理模型,在数学、代码和推理任务上表现优异,与OpenAI-o1模型不相上下。

将此类模型部署到本地,可为AI应用带来更强隐私保护、定制化和可控性。

今天指导大家如何使用Ollama——一款AI模型管理和运行工具——在本地计算机上部署并运行DeepSeek-R1

2 Ollama:运行助手

对于许多用户来说,如何在普通笔记本电脑上运行强大的AI模型是个难题。Ollama的出现,正是为了解决这一问题。Ollama是专为本地运行大语言模型设计的工具,操作简单,即便没有深厚的技术背景,也能轻松上手。

3 开始操作:环境设置

步骤1:安装Ollama

首先,需要在你的机器上安装并运行Ollama。

操作方法如下:前往Ollama官网(ollama.com),下载与你操作系统匹配的版本。

在这里插入图片描述

步骤2:验证Ollama安装

打开终端或命令提示符,输入:

~ ollama --version 
ollama version is 0.5.7

~ ollama 
Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  stop        Stop a running model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  ps          List running models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.

步骤3:下载 DeepSeek-R1

通过 Ollama 下载 DeepSeek-R1 非常方便,运行DeepSeek-R1-Distill-Qwen-7B,在终端中运行这个命令即可:

~ ollama run deepseek-r1 
~ ollama run deepseek-r1:7b 
pulling manifest
pulling 96c415656d37...  88% ▕█████████████████████████████████████████████████       ▏ 4.1 GB/4.7 GB  6.0 MB/s   1m33s

根据你的网络速度,此过程可能耗时,请耐心等待。

在这里插入图片描述

步骤4:运行DeepSeek R1

下载完成后,就可以启动 DeepSeek-R1。使用这个命令:

~ ollama run deepseek-r1:7b 
~ ollama run deepseek-r1:14b 
>>> /?
Available Commands:
  /set            Set session variables
  /show           Show model information
  /load <model>   Load a session or model
  /save <model>   Save your current session
  /clear          Clear session context
  /bye            Exit
  /?, /help       Help for a command
  /? shortcuts    Help for keyboard shortcuts

Use """ to begin a multi-line message.

>>> Send a message (/? for help)

如此便成功在本地运行该模型!

4 体验DeepSeek-R1功能

完成部署后,接下来就是探索DeepSeek-R1的强大功能。以下是几个典型应用场景:

送礼功能

魔法棒🪄指令:

>>> /
你是一个资深的熟悉电商业务技术系统设计的架构师,请你在一个成熟的电商平台上实现一个送礼功能,即送礼用户下单购买一个商品时,不需要填写地址,送礼用户完成支付后把这个订单分享给另外一个人,比如他的朋友,由他的朋友来填写地址,然后这个订单才算完成,并开始发货履约。

5 常见问题排查

即便使用像 Ollama 这样用户友好的工具,在使用时仍可能遇到一些小问题,以下是一些常见问题的解决方法:

问题:Ollama无法找到DeepSeek-R1

如果你收到Ollama找不到DeepSeek-R1的错误提示,可尝试运行 ollama list 命令。

~ ollama list 
NAME                       ID              SIZE      MODIFIED
deepseek-r1:14b            ea35dfe18182    9.0 GB    5 days ago
gemma2:9b                  ff02c3702f32    5.4 GB    9 days ago
gemma2:2b                  8ccf136fdd52    1.6 GB    9 days ago
deepseek-r1:1.5b           a42b25d8c10a    1.1 GB    9 days ago
deepseek-r1:latest         0a8c26691023    4.7 GB    10 days ago
ggml-vocab-qwen2:latest    71dd1769087f    5.9 MB    11 days ago

若列表中未显示DeepSeek-R1,说明模型未正确下载。此时可重新拉取模型:

~ ollama pull deepseek-r1 

在这里插入图片描述

6 本地AI的未来:DeepSeek-R1带来的无限可能

通过在本地运行DeepSeek-R1,我们可以深入思考其更深远的意义。将如此强大的AI模型部署到本地,不仅是技术上的突破,更对未来AI发展具有深远的展望价值。

此模式把先进语言模型的强大能力直接赋予用户,为实验和定制化带来了更多可能性,同时也更好地保护了隐私。以下是一些潜在的应用场景

  • 开发者可为特定行业打造高度专业化的AI助手;
  • 研究人员可在本地环境中对AI模型进行实验,无需依赖云服务;
  • 注重隐私的用户可在不共享数据的情况下,享受先进AI带来的便利。

以上列举应用场景只是冰山一角,DeepSeek-R1的潜力远不止于此,其拥有着无限广阔的发展前景,有望为AI领域带来更多创新和变革。

7 使用 Apidog 进行 API 测试

通过Ollama在本地运行DeepSeek-R1,你可以在自己的设备上直接利用强大的AI能力。按照本指南的步骤操作,即可完成模型的部署、运行,并将其轻松集成到你的项目中,完全掌控数据和运行环境。

### 解决运行 DeepSeek 时出现的 Ollama 错误 当遇到 `ollama` 命令执行过程中出现问题时,可以按照以下方法排查和解决问题。 #### 检查安装环境配置 确保操作系统已正确安装并配置了必要的依赖项。对于大多数 Linux 和 macOS 用户来说,通常需要 Python 及其开发库、Git 等工具。如果是在 Windows 上,则建议使用 WSL (Windows Subsystem for Linux) 来提供更稳定的 Unix-like 环境[^1]。 #### 验证网络连接状态 由于预训练模型是从远程仓库获取,因此良好的互联网访问至关重要。尝试打开浏览器测试能否正常浏览网页;另外也可以 ping 或者 tracert 测试到目标服务器之间的连通性情况。若发现存在网络障碍,则需联系网络管理员协助处理或切换至其他可用网络再重试操作。 #### 更新软件包列表与重新拉取镜像 有时本地缓存的数据可能已经过期或者损坏,这可能导致下载失败等问题发生。此时可以通过更新 APT/YUM 软件源索引以及清理旧版 Docker images 的方式来修复此类状况: ```bash sudo apt-get update && sudo apt-get upgrade -y # 对于Debian系发行版 sudo yum check-update && sudo yum makecache fast # 对于RedHat/CentOS/Fedora等RPM体系结构 docker system prune # 清理不再使用的容器、网络、卷及悬空镜像 ``` 之后再次尝试执行相应的 `ollama run` 下载指令看是否能顺利加载所需资源文件。 #### 查阅日志信息定位具体原因 每条命令执行完毕后都会打印一定量的日志输出,在其中往往包含了关于此次调用过程中的重要提示文字。仔细阅读这些反馈可以帮助快速锁定故障所在位置,并为进一步采取措施奠定基础。比如查看是否有权限不足、路径不存在之类的报错描述[^2]。 #### 寻求社区支持求助他人经验分享 假如经过上述几个环节仍然无法独立完成问题排除工作的话,不妨前往 GitHub Issues 页面提交 Issue 请求帮助,或是加入官方 QQ 微信交流群组与其他开发者互动沟通寻求解决方案。此外还可以关注 Chatbox AI 官网发布的最新动态和技术文档资料以获得更加全面深入的理解和支持服务[^3]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简放视野

深度思考,简放视野。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值