运用Logistic模型检验影响企业现金分红的主要因素

运用Logistic模型检验影响企业现金分红的主要因素

现金股息是以现金形式支付的股息和红利 , 是最普通、最基本的股息形式,是成熟资本市场最常见的股利形式,在我国 一般被称为“红利”也称派现或分红。通过股利政策研究,一般认为盈利能力、现金流量能力、投资收益能力、长期偿债能力、 股权结构、公司规模等因素能够对公司现金股利分配产生影响。

​ 本次研究以我国 2018-2020 年度上交所和深交所上市全部 A 股公司进行分析。本次研究的数据通过国泰安上市公司研究服务平台采集并计算所得,本文的分析软件采用 SAS软件进行分析。

image-20210611221027722

假设:

1、每股收益与每股现金股利正相关,即每股收益越大,企业越有可能发放现金股利。

2、资产负债比率与每股现金股利负相关,即资产负债比率越低,企业越有可能发放现金股利。

3、公司规模与每股现金股利正相关,即公司规模越大,企业越有可能发放现金股利。

4、流通比率与每股现金股利负相关,即流通比率越高,企业越有可能发放现金股利。

5、上年度现金股利支付水平与每股现金股利正相关,即若企业上一年度发放了现金股利,则企业今年发放现金股利的可能性越大。

6、营业毛利率越高,企业越有可能发放现金股利。

首先导入从国泰安上市公司研究服务平台获得的2018-2020年的上交所和深交所A股的相应数据。

/*导入2018-2020年上交所和深交所A股的相应数据*/
%macro dlsjcl(x);
proc import out=ss&x.
            Datafile="C:\Users\ASUS\Desktop\SAS在金融中的运用\期末大作业\&x.年上市公司数据汇总.xlsx"
			DbmS=xlsx replace;
			getnames=yes;
run;
%do i=4 %to 18;
data ss&x.;
modify ss&x.;
if var&i.=.  then remove;
run;
%end
/*把有缺失值的数据都删除*/
data ss&x.;
set ss&x.;
rename var1=code var2=name  var3=xjgl var4=jzcsyl var5=zcfzl var6=jzc1 var7=jzc0  var8=mgsy var9=mgjzc var10=ltga var11=ltgb var12=ltgh var13=ltgjw 
var14=gfzs var15=yymll var16=yylr var17=yyzsr var18=zczj var19=xjglsq var20=zgb;
/*xjgl代表每股现金股利
jzcsyl代表净资产收益率
zcfzl 代表资产负债率
jzc1代表本期净资产总额
jzc0代表上期净资产总额
mgsy代表每股收益
mgjzc代表每股净资产
ltga ltgb ltgh ltgjw代表在不同市场上的流通股
gfzs代表总股数
yymll代表营业毛利率
yylr代表营业利润
yyzsr代表营业总收入
zczj代表资产总额
xjglsq代表上一期的现金股利
zgb代表总股本(发行后)
*/
run;
data ss&x.;
set ss&x.;
jzczzl=jzc1/jzc0;/*计算净资产增长率jzczzl*/
ltbl=(ltga+ltgb+ltgh+ltgjw)/gfzs;/*计算流通比率ltbl*/
gdqybl=jzc1/zczj;/*计算股东权益比率gdqybl*/
gbds=log(zgb);/*对总股本取对数得到股本对数gbds*/
run;
data ss&x.;
set ss&x.;
keep code name xjgl jzcsyl zcfzl jzczzl mgsy mgjzc  ltbl yymll gdqybl gbds xjglsq;
run;
%mend dlsjcl;
%dlsjcl(2020);
%dlsjcl(2019);
%dlsjcl(2018);
run;
data hzsj;
set ss2018 ss2019 ss2020;
run;
/*由于其后的logistic模型需要数值型的数据,故在此进行格式转化*/
data hzsj;
set hzsj;
xjgl1=input(xjgl,12.8);
jzcsyl1=input(jzcsyl,12.8);
zcfzl1=input(zcfzl,12.8);
mgsy1=input(mgsy,12.8);
mgjzc1=input(mgjzc,12.8);
yymll1=input(yymll,12.8);
xjglsq1=input(xjglsq,12.8);
drop xjgl jzcsyl zcfzl  mgsy mgjzc yymll xjglsq;
run;
data hzsj;
set hzsj;
rename xjgl1=xjgl jzcsyl1=jzcsyl  zcfzl1=zcfzl  mgsy1=mgsy  mgjzc1=mgjzc  yymll1=yymll  xjglsq1=xjglsq;
run;

由于Logistic模型适用于二分类因变量,所以对hzsj进行处理,当期有现金分红的xjgl记为1,无现金分红的xjgl记为0,
上一期有现金分红的xjglsq记为1,上一期无现金分红的xjglsq记为0

/*由于Logistic模型适用于二分类因变量,所以对hzsj进行处理,当期有现金分红的xjgl记为1,无现金分红的xjgl记为0,
上一期有现金分红的xjglsq记为1,上一期无现金分红的xjglsq记为0*/
data hzsj;
set hzsj;
if xjgl=. then xjgl=0;
else xjgl=1;
if xjglsq=. then xjglsq=0;
else xjglsq=1;
run;
/*获取hzsj中有现金股利的观测数*/
data hzsjjs;
set hzsj;
proc sort data=hzsjjs;
by xjgl;
run;
proc freq data=hzsjjs;
tables xjgl;
run;
/*由结果可知hzsj有现金分红的观测数为6061,无现金分红的观测为4425,即有现金分红企业在全部企业中所占的比例为6061/10486=0.578*/
/*将数据集hzsj随机地分成训练样本组husjxl和检验样本组husjjy*/
data hzsjfz;
set hzsj;
k=uniform(131);
proc sort data=hzsjfz;
by  xjgl k;
data hzsjxl hzsjjy;
set hzsjfz;
drop k;
if int(_n_/2)-_n_/2=0 then output hzsjxl;/*其中有5243个观测,其中有3031家企业发放了现金股利*/
else output hzsjjy;/*其中有5243个观测*/
run;
proc freq data=hzsjxl;
tables xjgl;
run;
/*训练样本组hzsjxl中有5243个观测,其中有3031家企业发放了现金股利,2212家企业没有发放现金股利*/
proc freq data=hzsjjy;
tables xjgl;
run;
/*训练样本组hzsjxl中有5243个观测,其中有3030家企业发放了现金股利,2213家没有发放现金股利*/
proc logistic descending data=hzsjxl;
model xjgl=jzcsyl zcfzl jzczzl mgsy mgjzc  ltbl yymll gdqybl gbds xjglsq/selection=stepwise;
run;
/*用逐步回归分析选择出zcfzl、mgsy、mgjzc、ltbl、yymll、xjglsq这几个变量,并得到:
z=0.0887-1.2282zcfzl+0.8882mgsy-0.0847mgjzc-1.1754ltbl+0.4269yymll+2.2811xjglsq
此模型中只有截距项不显著*/

用逐步回归分析选择出zcfzl、mgsy、mgjzc、ltbl、yymll、xjglsq这几个变量,并得到:
z = 0.0887 − 1.2282 ∗ z c f z l + 0.8882 ∗ m g s y − 0.0847 ∗ m g j z c − 1.1754 ∗ l t b l + 0.4269 ∗ y y m l l + 2.2811 ∗ x j g l s q z=0.0887-1.2282*zcfzl+0.8882*mgsy-0.0847*mgjzc-1.1754*ltbl+0.4269*yymll+2.2811*xjglsq z=0.08871.2282zcfzl+0.8882mgsy0.0847mgjzc1.1754ltbl+0.4269yymll+2.2811xjglsq
此模型中只有截距项不显著;

逐步分析法结果图:image-20210611233502967

对模型
z = 0.0887 − 1.2282 ∗ z c f z l + 0.8882 ∗ m g s y − 0.0847 ∗ m g j z c − 1.1754 ∗ l t b l + 0.4269 ∗ y y m l l + 2.2811 ∗ x j g l s q z=0.0887-1.2282*zcfzl+0.8882*mgsy-0.0847*mgjzc-1.1754*ltbl+0.4269*yymll+2.2811*xjglsq z=0.08871.2282zcfzl+0.8882mgsy0.0847mgjzc1.1754ltbl+0.4269yymll+2.2811xjglsq
的分类准确率进行检验:

/*取p=0.578,当p1>=0.578时,判断企业会发放现金股利,当p1<0.578时判断企业不会发放现金股利*/
data hzsjxljg;
set hzsjxl;
z=0.0887-1.2282*zcfzl+0.8882*mgsy-0.0847*mgjzc-1.1754*ltbl+0.4269*yymll+2.2811*xjglsq;
p1=1/(1+exp(-z));
zqyf=0;
if xjgl=1 and p1>=0.578 then zqyf=11;
if xjgl=1 and p1<0.578 then zqyf=10;
if xjgl=0 and p1>=0.578 then zqyf=101;
if xjgl=0 and p1<=0.578 then zqyf=100;
run; 
proc freq data=hzsjxljg;
tables zqyf;
run;
data hzsjjyjg;
set hzsjjy;
z=0.0887-1.2282*zcfzl+0.8882*mgsy-0.0847*mgjzc-1.1754*ltbl+0.4269*yymll+2.2811*xjglsq;
p1=1/(1+exp(-z));
zqyf=0;
if xjgl=1 and p1>=0.578 then zqyf=11;
if xjgl=1 and p1<0.578 then zqyf=10;
if xjgl=0 and p1>=0.578 then zqyf=101;
if xjgl=0 and p1<=0.578 then zqyf=100;
run; 
proc freq data=hzsjjyjg;
tables zqyf;
run;

结果图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CiQNQhnk-1630667990109)(C:\Users\ASUS\AppData\Roaming\Typora\typora-user-images\image-20210611233722696.png)]

从以上结果可知:该模型对无现金股利的企业的预测准确率不算很高;

由于上数模型的常数项并不显著,尝试将模型中的常数项删去,检验结果如何:

/*接下来尝试将模型中的截距项删去*/
data hzsjxljg;
set hzsjxl;
z=-1.2282*zcfzl+0.8882*mgsy-0.0847*mgjzc-1.1754*ltbl+0.4269*yymll+2.2811*xjglsq;
p1=1/(1+exp(-z));
zqyf=0;
if xjgl=1 and p1>=0.578 then zqyf=11;
if xjgl=1 and p1<0.578 then zqyf=10;
if xjgl=0 and p1>=0.578 then zqyf=101;
if xjgl=0 and p1<=0.578 then zqyf=100;
run; 
proc freq data=hzsjxljg;
tables zqyf;
run;
data hzsjjyjg;
set hzsjjy;
z=-1.2282*zcfzl+0.8882*mgsy-0.0847*mgjzc-1.1754*ltbl+0.4269*yymll+2.2811*xjglsq;
p1=1/(1+exp(-z));
zqyf=0;
if xjgl=1 and p1>=0.578 then zqyf=11;
if xjgl=1 and p1<0.578 then zqyf=10;
if xjgl=0 and p1>=0.578 then zqyf=101;
if xjgl=0 and p1<=0.578 then zqyf=100;
run; 
proc freq data=hzsjjyjg;
tables zqyf;
run;

结果图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Eo8GafkY-1630667990111)(C:\Users\ASUS\AppData\Roaming\Typora\typora-user-images\image-20210611234052422.png)]

从结果可以发现,没有显著的提高分类的准确率。

尝试将上述模型中较不显著的yymll删去,重新得到模型,检验结果

proc logistic descending data=hzsjxl;
model xjgl=zcfzl mgsy mgjzc  ltbl   xjglsq;
run;

得到模型:
z = 0.2658 − 1.3472 ∗ z c f z l + 0.9053 ∗ m g s y − 0.0828 ∗ m g j z c − 1.1966 ∗ l t b l + 2.2815 ∗ x j g l s q ; z=0.2658-1.3472*zcfzl+0.9053*mgsy-0.0828*mgjzc-1.1966*ltbl+2.2815*xjglsq; z=0.26581.3472zcfzl+0.9053mgsy0.0828mgjzc1.1966ltbl+2.2815xjglsq;
按前述方法,继续对模型进行检验:

data hzsjxljg;
set hzsjxl;
z=0.2658-1.3472*zcfzl+0.9053*mgsy-0.0828*mgjzc-1.1966*ltbl+2.2815*xjglsq;
p1=1/(1+exp(-z));
zqyf=0;
if xjgl=1 and p1>=0.578 then zqyf=11;
if xjgl=1 and p1<0.578 then zqyf=10;
if xjgl=0 and p1>=0.578 then zqyf=101;
if xjgl=0 and p1<=0.578 then zqyf=100;
run; 
proc freq data=hzsjxljg;
tables zqyf;
run;
data hzsjjyjg;
set hzsjjy;
z=0.2658-1.3472*zcfzl+0.9053*mgsy-0.0828*mgjzc-1.1966*ltbl+2.2815*xjglsq;
p1=1/(1+exp(-z));
zqyf=0;
if xjgl=1 and p1>=0.578 then zqyf=11;
if xjgl=1 and p1<0.578 then zqyf=10;
if xjgl=0 and p1>=0.578 then zqyf=101;
if xjgl=0 and p1<=0.578 then zqyf=100;
run; 
proc freq data=hzsjjyjg;
tables zqyf;
run;

结果图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M2bXbid0-1630667990112)(C:\Users\ASUS\AppData\Roaming\Typora\typora-user-images\image-20210611234441414.png)]

结果并没有得到有效改善;

通过以上的模型,我们虽然没有得到检验效果很好的模型,但通过观察模型中的解释变量即参数的正负号和显著性,上述的六条假设除了第3条以外都得到都得到了有效的证明;

由于上述模型的效果不是很好,猜想可能与将上一期现金股利也划分为二分类变量有关,所以接下来只将当期现金股利构建成二分类变量,重新构建模型:

前面导入数据的代码不变,只需将xjglsq的赋值方式稍作修改即可

/*由于Logistic模型适用于二分类因变量,所以对hzsj进行处理,当期有现金分红的xjgl记为1,无现金分红的xjgl记为0*/
data hzsj;
set hzsj;
if xjgl=. then xjgl=0;
else xjgl=1;
if xjglsq=. then xjglsq=0;/*对xjglsq的赋值方式的修改*/
run;
/*获取hzsj中有现金股利的观测数*/
data hzsjjs;
set hzsj;
proc sort data=hzsjjs;
by xjgl;
run;
proc freq data=hzsjjs;
tables xjgl;
run;
/*由结果可知hzsj有现金分红的观测数为6061,无现金分红的观测为4425,即有现金分红企业在全部企业中所占的比例为6061/10486=0.578*/
/*将数据集hzsj随机地分成训练样本组husjxl和检验样本组husjjy*/
data hzsjfz;
set hzsj;
k=uniform(131);
proc sort data=hzsjfz;
by  xjgl k;
data hzsjxl hzsjjy;
set hzsjfz;
drop k;
if int(_n_/2)-_n_/2=0 then output hzsjxl;/*其中有5243个观测,其中有3031家企业发放了现金股利*/
else output hzsjjy;/*其中有5243个观测*/
run;
proc freq data=hzsjxl;
tables xjgl;
run;
/*训练样本组hzsjxl中有5243个观测,其中有3031家企业发放了现金股利,2212家企业没有发放现金股利*/
proc freq data=hzsjjy;
tables xjgl;
run;
/*训练样本组hzsjxl中有5243个观测,其中有3030家企业发放了现金股利,2213家没有发放现金股利*/
proc logistic descending data=hzsjxl;
model xjgl=jzcsyl zcfzl jzczzl mgsy mgjzc  ltbl yymll gdqybl gbds xjglsq/selection=stepwise;
run;
/*用逐步回归分析选择出zcfzl、mgsy、mgjzc、ltbl、yymll、xjglsq这几个变量,并得到:
z=1.6309-1.407*zcfzl+0.9355*mgsy-0.0424*mgjzc-1.3891*ltbl+0.5725*yymll+1.4401*xjglsq;*/
/*取p=0.578,当p1>=0.578时,判断企业会发放现金股利,当p1<0.578时判断企业不会发放现金股利*/
data hzsjxljg;
set hzsjxl;
z=1.6309-1.407*zcfzl+0.9355*mgsy-0.0424*mgjzc-1.3891*ltbl+0.5725*yymll+1.4401*xjglsq;
p1=1/(1+exp(-z));
zqyf=0;
if xjgl=1 and p1>=0.578 then zqyf=11;
if xjgl=1 and p1<0.578 then zqyf=10;
if xjgl=0 and p1>=0.578 then zqyf=101;
if xjgl=0 and p1<=0.578 then zqyf=100;
run; 
proc freq data=hzsjxljg;
tables zqyf;
run;
data hzsjjyjg;
set hzsjjy;
z=1.6309-1.407*zcfzl+0.9355*mgsy-0.0424*mgjzc-1.3891*ltbl+0.5725*yymll+1.4401*xjglsq;
p1=1/(1+exp(-z));
zqyf=0;
if xjgl=1 and p1>=0.578 then zqyf=11;
if xjgl=1 and p1<0.578 then zqyf=10;
if xjgl=0 and p1>=0.578 then zqyf=101;
if xjgl=0 and p1<=0.578 then zqyf=100;
run; 
proc freq data=hzsjjyjg;
tables zqyf;
run;

逐步回归法结果图:image-20210612001730229

分类结果图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1DF4S9gY-1630667990113)(C:\Users\ASUS\AppData\Roaming\Typora\typora-user-images\image-20210612001722710.png)]

此方法也没有很好的改善结果;

结论:虽然以上模型对样本训练组和检验样本组的分类准确率不是很高,但是模型中的参数都是显著的,且基本符合一般研究结论。所以可以确定资产负债率、每股收益、每股净资产、流通比率、营业毛利率、上年度每股股利对企业是否发放现金股利的影响显著。

进一步观察模型中相应变量参数的的正负号,可以得到以下结论:

1、每股收益越大,企业越有可能发放现金股利。

2、资产负债比率越低,企业越有可能发放现金股利。

3、每股净资产对企业发放现金股利的影响为负,公司规模适中的企业,发放现金股利的可能性较大。

4、流通比率越高,企业越有可能发放现金股利。

5、若企业上一年度发放了现金股利,前上年度发放现金股利的水平越高,则企业今年发放现金股利的可能性越大。

gY-1630667990113)]

此方法也没有很好的改善结果;

结论:虽然以上模型对样本训练组和检验样本组的分类准确率不是很高,但是模型中的参数都是显著的,且基本符合一般研究结论。所以可以确定资产负债率、每股收益、每股净资产、流通比率、营业毛利率、上年度每股股利对企业是否发放现金股利的影响显著。

进一步观察模型中相应变量参数的的正负号,可以得到以下结论:

1、每股收益越大,企业越有可能发放现金股利。

2、资产负债比率越低,企业越有可能发放现金股利。

3、每股净资产对企业发放现金股利的影响为负,公司规模适中的企业,发放现金股利的可能性较大。

4、流通比率越高,企业越有可能发放现金股利。

5、若企业上一年度发放了现金股利,前上年度发放现金股利的水平越高,则企业今年发放现金股利的可能性越大。

6、营业毛利率越高,企业越有可能发放现金股利。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值