spss logistic回归分析结果如何分析

spss logistic回归分析结果如何分析

如何用spss17.0进行二元和多元logistic回归分析

一、二元logistic回归分析

二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。

下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。

(一)数据准备和SPSS选项设置

第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 图 1-1

第二步:打开“二值Logistic 回归分析”对话框:

沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。

如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。

在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。 接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中“exp(B)的CI(X)”一定要勾选,这个就是输出的OR和CI值,后面的95%为系统默认,不需要更改。


另外在“选项”对话框中,“输出”一栏中,系统默认为“在每个步骤中”,这里更改为“在最后一个步骤中”,即:输出结果将仅仅给出最终结果,而省略每一步的计算过程。由于我们采用强迫回归,逐步回归概率选项可以不管

此外还有一个选项需要说明。一是分类临界值(Classification cutoff),默认值为0.5,即按四舍五入的原则将概率预测值化为0 或者1

。如果

将数值改为0.6,则大于等于0.6 的概率值才表示为1,否则为0。其情况余依此类推。二是最大迭代值(Maximum Iterations),规定系统运算的迭代次数,默认值为20 次,为安全起见,我们将迭代次数增加到50。原因是,有时迭代次数太少,计算结果不能真正收敛。三是模型中包括常数项(Include constant in model),即模型中保留截距。除了迭代次数之外,其余两个选项均采用系统默认值。

完成后,点击各项中“继续(Continue)”按钮。返回图1-3,单击“确定”按钮。

(二)结果解读

其他结果参照文章《利用SPSS进行Logistic回归分析》中解读,这里重点将两点: 第一,分类变量编码(图1-7),由于这里包括性别分类变量,而我们对性别赋值为1和0,但在spss中系统会默认把我们的数值进行置换,即1→参数编码0,0→参数编码1,而最终输出结果是以1来计算的,而0为参考数据。所以这也就是为什么我么之前要对研究组男性的赋值进行置换了。如果男性为1那么spss中最终输出的将是女性的分析结果。

图1-7

第二,最终输出数据(图1-8)在该结果中,Exp(B)即为文献中提及的OR值,而EXP(B)的95%C.I.即为文献中提及的CI值。其中Exp(B)表示某因素(自变量)内该类别是其相应参考类别具有某种倾向性的倍数。而有的文献中提到的Crode OR和Adjust OR则分别为单因素优势率(Crode odds ratio)和多因素优势率(Adjust odds ratio),即仅对性

别单个变量的单因素分析或者对性别和年龄等多个变量进行多因素分析后所得到的不同结果。CI则为可信区间(Confidence interval)。Sig.即我们常说的P值,P<0.05为显著(无效假说不成立,具有统计学意义),P>0.05为不显著(无效假说成立,不具有统计学意义)。 二、多项(多元、多分类、Multinomial)logistic回归分析

前面讲的二元logistic回归分析仅适合因变量Y只有两种取值(二分类)的情况,当Y具有两种以上的取值时,就要用多项logistic回归(Mutinomial Logistic Regression)分析了。这种分析不仅可以用于医疗领域,也可以用于社会学、经济学、农业研究等多个领域。如不同阶段(初

一、初二、初三)学生视力下降程度,不同龋齿情况(轻度、中度、重度)下与刷牙、饮食、年龄的关系等。

下面我们以图1-2中,对apoba1(ApoB/AI)项中数值做四分位数后,将病人的ApoB/AI的比值划分为低、较低、中、高四个分位后利用多项logistic回归分析其与ICAS之间的相互关系。

首先来做四分位数,很多人在做四分位数的时候都是自己算出来的,其实在SPSS里面给出了做四分位数的程度即分析(Aanlyze)→描述统计(Descriptive Statistics)→频率(Frequencies)。打如图2-1开频率对话框。将我们要分析的数值变量Apoba1选入到变量对话框中。 选择统计量,按照图2-2中勾选四分位数选项,其他选项按照自己需要勾选,然后点击图2-1中的确定按钮,开始运算。在图2-3中可以读取我们的四分位数

值。图中百分数表示的是对该变量做的四分位数的百分比,25表示前25%的,50表示前50%的,75表示前75%的。每一项对应的后面数值即为相应的四分位数,如0.5904,即为前25%的个体与后75%个体的分位数。

按照如上方法得出ApoB/AI的比率后我们可以把该比值划分为四个区间,即当ApoB/AI的比率<0.5904为低、当0.5904≤ApoB/AI的比率≤0.88时为较低、当0.89≤ApoB/AI的比率≤1.0886时为中,当ApoB/AI的比率>1.0886时为高。然后将这一划分如图1-1中“四分位数”一项用分类数值表示即1代表低,2代表较低,3代表中,4代表高。这里还要强调的是我们要研究其与ICAS之间的相互关系,那么我们需要将其设为二分类变量,即是ICAS的情况为1,否则为0,但多项logistic回归分析也会将1,0置换,所以我们需要在这里将我们需要研究的情况置换为0,然后将其他置换为1。下面就可以进行多项logistic回归分析了。如图

2-4打开多项logistic回归分析对话框(图2-5)。

如图2-5所示,在”因变量”中选入刚才我们输入的四分位数分类变量,在因子中输入分类变量ICAS(这里一定是分类变量,可以是一个也可以是多个),在“协变量”中输入数值变量如年龄(这里一定是数值变量,

可以是一个也可以是多个),但因本次没有对年龄进行分析,仅对ICAS进行了单因素分析,所以我们把年龄移出协变量选项。

在SPSS中对因变量的定义是,如果因变量Y有J个值(即Y有J类),以其中一个类别作为参考类别,其他类别都同他相比较生成J-1个冗余的Logit变换模型,而作为参考类别的其模型中所有系数均为0。在SPSS中可以对所选因变量的参考类别进行设置,如图2-5在因变量对话框下有一“参考类别”选项。点击后会弹出图2-6对话框。在该对话框中我们选中设定,输入数值1,这代表我们以分类数值1所代表的类别作为参考类别,即最低数值作为参考类别。 单击继续。当然也可以选择“第一类别”和“最后类别”,入选中分别表示以最低数值或最高数值作为参考类别。其他设置与二元Logistic分析相似,将我们要输出的项勾选即可,点击图2-5中确定,输出数据。 输出数据基本与二元Logistic分析相似,我们重点讲下最后一项“参考估计”,如图2-7所示,其中参考类别为ICAS=1的分类情况,而其中的ICAS=0分为2、3、4三种,分别给出了ICAS=0时的数值。而其中Exp(B)(即OR值)表示某因素(自变量)内该类别是其相应参考类别具有某种倾向性的倍数。如Exp(B)=2.235时,即表示在较轻这一类别下ICAS患者数为其他类别(ECAS和NCAS)的2.235倍。这里面的显著水平即为P值。数据分析培训

这里要强调的是,一些文献中在输出数据的时候经常会给出“Referent(参考)”项,这里的Referent,即为我们这里所选的参考类别1,因为

1作为参考类别,所以其所有数值为0

,即无数据输出。因此在文中需标注其为Referent。

转载于:https://www.cnblogs.com/amengduo/p/9587237.html

<h3>回答1:</h3><br/>SPSS二元logistic回归是一种常用的统计分析方法,用于研究两个二元变量之间的关系。其结果分析主要包括以下几个方面: 1. 模型拟合度:通过观察模型的拟合度统计量(如拟合优度、对数似然比、卡方值等),来评估模型的拟合程度。一般来说,拟合度越高,说明模型对数据的拟合程度越好。 2. 变量的显著性:通过观察变量的系数和标准误,来判断变量是否对因变量有显著的影响。一般来说,系数的绝对值越大,说明变量对因变量的影响越大;而标准误越小,说明系数的估计越精确,结果越可靠。 3. 模型的预测能力:通过观察模型的分类准确率、ROC曲线、AUC值等指标,来评估模型的预测能力。一般来说,分类准确率越高,说明模型的预测能力越好;而ROC曲线越靠近左上角,AUC值越接近1,说明模型的预测能力越强。 4. 模型的解释力:通过观察变量的系数符号和大小,来解释变量对因变量的影响方向和程度。一般来说,系数为正表示变量对因变量的影响是正向的,系数为负表示影响是负向的;而系数的大小可以用来比较不同变量对因变量的影响程度。 综上所述,SPSS二元logistic回归结果分析需要综合考虑以上几个方面,以得出对研究问题的合理解释和结论。 <h3>回答2:</h3><br/>SPSS二元Logistic回归是一种常见的数据分析方法,它可以用于分析两个二元变量之间的关系,并预测一个变量的概率。在进行SPSS二元Logistic回归分析时,我们需要关注以下几个方面: 1.模型拟合度 使用SPSS软件进行Logistic回归分析,我们需要评估模型的拟合度。通常使用的度量指标有拟合优度(Goodness of Fit)、似然比检验(Likelihood Ratio Test)和 Hosmer-Lemeshow检验等。其中,拟合优度是用来衡量模型实际数据的拟合程度,数值越接近1,则说明模型拟合效果越好。似然比检验则是通过比较两个模型的贡献值来检验模型的显著性,如果p值小于0.05,则说明模型的显著性高。Hosmer-Lemeshow检验则是检验模型的适配度,如果p值大于0.05,则说明模型适配度较好。 2.模型系数 在SPSS中,我们可以通过二元Logistic回归的系数表格来观察各个变量结果的影响程度。系数值越大,则表示该变量结果的影响程度越大。同时,系数的正负也能够告诉我们该变量结果的方向性影响。例如,系数为正,则代表该变量结果产生正向影响;反之,系数为负则代表该变量结果产生负向影响。 3.变量显著性检验 在SPSS中,我们可以使用p值或置信区间来检验各个变量的显著性。如果p值小于0.05,则说明该变量结果的影响是显著的。同样,我们也可以通过置信区间来确定变量是否显著,如果灵敏度大于等于95%且不包含0,则说明该变量显著。 4.模型预测 最后,我们可以使用模型对未知数据进行预测。在SPSS中,我们可以通过创建新的数据表格并进行预测来实现。具体来说,我们需要将预测变量的值填充到数据表格中,然后点击预测,即可得到对应的预测概率和分类结果。在进行预测时,我们需要注意样本的代表性和可靠性,否则得到的预测结果可能会存在误差。 综上所述,SPSS二元Logistic回归结果分析需要关注模型拟合度、模型系数、变量显著性检验和模型预测等方面,以充分利用Logistic回归模型对数据进行准确的统计分析和预测。 <h3>回答3:</h3><br/>SPSS(Statistical Product and Service Solutions)是一款专业的统计分析软件,可以进行多种分析,其中包括二元logistic回归分析。二元logistic回归分析是用于判断一个二分类变量和一个或多个自变量之间的关系,预测因变量的变化。下面将对SPSS进行的二元logistic回归结果进行分析。 在SPSS中进行二元logistic回归分析后,会得到一个包含各种统计学变量和p值的表格。其中最重要的是二元logistic回归系数,该系数表明了因变量和自变量之间的关系。如果系数为正数,则说明自变量越大,因变量的值也会越大;如果系数为负数,则说明自变量越大,因变量的值会越小。此外,还需要注意的是,回归系数应该根据数据的实际情况进行解释和分析。 在分析结果时,还需要关注SPSS输出表中的准确度和适合度。准确度可以通过SPSS输出表中的“模型拟合”和“分类表”来评估,其中“模型拟合”包含了一些评估模型适合度的统计方法,例如:对数似然比、现有数值和Akaike信息准则。而“分类表”则表示模型的预测的准确度。 除此之外,我们还可以通过ROC曲线来评估SPSS二元logistic回归模型的质量。ROC曲线展示了在将因变量分类为正和负时,分类器性能的变化情况。该曲线通过绘制控制组和试验组的真阳性率和假阳性率之间的关系来构建。 最后,需要注意的是,SPSS二元logistic回归分析结果只是一种数据分析工具,最终的决策还必须考虑到数据的实际情况和提出的假设是否可以得到验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值