caffe层解读系列-softmax_loss

本文详细解析了Caffe中的softmax_loss层,包括其作为损失函数的两步计算过程:softmax概率归一化和损失计算。讨论了可选参数如ignore_label、normalize和normalization对损失计算的影响,并介绍了该层的常规及扩展使用场景,特别是在多维标签情况下的应用。
摘要由CSDN通过智能技术生成

Loss Function

softmax_loss的计算包含2步:

(1)计算softmax归一化概率

归一化概率

(2)计算损失

这里写图片描述

这里以batchsize=1的2分类为例:
设最后一层的输出为[1.2 0.8],减去最大值后为[0 -0.4],
然后计算归一化概率得到[0.5987 0.4013],
假如该图片的label为1,则Loss=-log0.4013=0.9130

可选参数

(1) ignore_label

int型变量,默认为空。
如果指定值,则label等于ignore_label的样本将不参与Loss计算,并且反向传播时梯度直接置0.

(2) norma

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值